Advertisement

Ecosystems

pp 1–19 | Cite as

Biological Nitrogen Fixation Does Not Replace Nitrogen Losses After Forest Fires in the Southeastern Amazon

  • Michelle Y. WongEmail author
  • Christopher Neill
  • Roxanne Marino
  • Divino V. Silvério
  • Paulo M. Brando
  • Robert W. Howarth
Article

Abstract

Tropical forest fires have become more common due to interactions between deforestation, land clearing, and drought. Forest recovery following fires may be limited by nitrogen. Biological nitrogen fixation (BNF) is the main pathway for new nitrogen (N) to enter most ecosystems, but BNF may be constrained by other nutrients, such as molybdenum and phosphorus, which are required for the process. We studied the role of BNF 7 years into the recovery of southeastern Amazon tropical forests that were burned experimentally either annually or every 3 years between 2004 and 2010. We hypothesized that, compared with unburned primary forests, BNF in burned forests would increase due to the depletion of N in the aboveground biomass pool and that soil concentrations of molybdenum and phosphorus from ash inputs would increase, reducing their potential constraints on BNF. Despite the fires depleting about half the aboveground N pool and rapid rates of recovery in leaf biomass and litterfall production, we found low rates of both free-living and symbiotic BNF. Higher concentrations of molybdenum and phosphorus in the mineral soils of the burned forests indicated that these elements were likely not limiting BNF. Our results suggest that despite the N demand for regrowth post-fire, substantial N stored in soils likely downregulates BNF. Overall, we found surprisingly low BNF rates (< 1.2 kg N ha−1 y−1) in this region of the Amazon, which contrasts with the traditional paradigm that (1) tropical forests fix large quantities of N and (2) that BNF increases after forest disturbance.

Keywords

symbiotic nitrogen fixation free-living nitrogen fixation forest fires molybdenum (Mo) phosphorus (P) tropical forests secondary forests 

Notes

Acknowledgements

We thank Louis Derry and Greg McLwee (Cornell University, Earth and Atmospheric Sciences); Richard McHorney (Marine Biological Laboratory), Melanie Hayn (Cornell University, Ecology and Evolutionary Biology), Stephen Parry (Cornell Statistical Consulting Unit), Hillary Sullivan, Paul Lefebvre, and Lindsay Scott (Woods Hole Research Center), and Kim Sparks (COIL) for laboratory and field development and assistance; Joy Winbourne and Ben Sullivan for sampling method development; Tim Fahey, Fiona Soper, and two anonymous reviewers for comments on the manuscript; and Luiz Martinelli for the foliar analysis. We thank the Instituto de Pesquisa Ambiental da Amazônia (IPAM) for institutional support, in particular the IPAM field staff for sampling and monitoring of plots: Darlisson Nunes, Maria Lucia Nascimento, Raimundo Mota Quintino, Leonardo Maracahipes dos Santos, and Sebastião Aviz do Nascimento. Special thanks to Grupo Amaggi for allowing the research to take place on their farm and providing infrastructure support. Funding was provided by Mario Einaudi and Cornell University travel grants, Sigma Xi (Cornell Chapter), Paul P. Feeny Fund, the Andrew W. Mellon Grant, and the Cornell University Program in Cross-Scale Biogeochemistry and Climate (NSF-IGERT, DGE-1069193) and the Atkinson Center for a Sustainable Future. This research was also supported by a CNPq grant awarded to P.M.B. (#305542/2010-9) and a postdoctoral scholarship to D.V.S. (#405800/2013-4). M.Y.W. was supported by an NSF IGERT Fellowship and an NSF Graduate Research Fellowship.

Supplementary material

10021_2019_453_MOESM1_ESM.docx (343 kb)
Supplementary material 1 (DOCX 342 kb)

References

  1. Anderson MD, Ruess RW, Uliassi DD, Mitchell JS. 2004. Estimating N2 fixation in two species of Alnus in interior Alaska using acetylene reduction and 15N2 uptake. Ecoscience 11:102–12.Google Scholar
  2. Andreae MO, Merlet P. 2001. Emission of trace gases and aerosols from biomass burning. Glob Biogeochem Cycles 15:955–66.CrossRefGoogle Scholar
  3. Aragão LEOC, Anderson LO, Fonseca MG, Rosan TM, Vedovato LB, Wagner FH, Silva CVJ, Silva Junior CHL, Arai E, Aguiar AP, Barlow J, Berenguer E, Deeter MN, Domingues LG, Gatti L, Gloor M, Malhi Y, Marengo JA, Miller JB, Phillips OL, Saatchi S. 2018. 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat Commun 9:1–12.CrossRefGoogle Scholar
  4. Balch JK, Nepstad DC, Brando PM, Curran LM, Portela O, de Carvalho O, Lefebvre P. 2008. Negative fire feedback in a transitional forest of southeastern Amazonia. Glob Change Biol 14:2276–87.CrossRefGoogle Scholar
  5. Balch JK, Nepstad DC, Curran LM, Brando PM, Portela O, Guilherme P, Reuning-Scherer JD, de Carvalho Jr O. 2011. Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon. For Ecol Manag 261:68–77.CrossRefGoogle Scholar
  6. Barron AR, Purves DW, Hedin LO. 2011. Facultative nitrogen fixation by canopy legumes in a lowland tropical forest. Oecologia 165:511–20.PubMedCrossRefGoogle Scholar
  7. Barron AR, Wurzburger N, Bellenger JP, Wright SJ, Kraepiel AML, Hedin LO. 2009. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nat Geosci 2:42–5.CrossRefGoogle Scholar
  8. Batterman SA, Hedin LO, Van Breugel M, Ransijn J, Craven DJ, Hall JS. 2013a. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502:224–7.PubMedCrossRefGoogle Scholar
  9. Batterman SA, Wurzburger N, Hedin LO. 2013b. Nitrogen and phosphorus interact to control tropical symbiotic N2 fixation: a test in Inga punctata. J Ecol 101:1400–8.CrossRefGoogle Scholar
  10. Brando PM, Balch JK, Nepstad DC, Morton DC, Putz FE, Coe MT, Silvério D, Macedo MN, Davidson EA, Nóbrega CC, Alencar A, Soares-Filho BS. 2014. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc Natl Acad Sci USA 111:6347–52.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Brookshire ENJ, Wurzburger N, Currey B, Menge DNL, Oatham MP, Roberts C. 2019. Symbiotic N fixation is sufficient to support net aboveground biomass accumulation in a humid tropical forest. Sci Rep 9:1–10.CrossRefGoogle Scholar
  12. Casals P, Romanya J, Vallejo VR. 2005. Short-term nitrogen fixation by legume seedlings and resprouts after fire in Mediterranean old-fields. Biogeochemistry 76:477–501.CrossRefGoogle Scholar
  13. Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WBC, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Martínez-Yrízar A, Mugasha WA, Muller-Landau HC, Mencuccini M, Nelson BW, Ngomanda A, Nogueira EM, Ortiz-Malavassi E, Pélissier R, Ploton P, Ryan CM, Saldarriaga JG, Vieilledent G. 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Change Biol 20:3177–90.CrossRefGoogle Scholar
  14. Cochrane MA. 2001. Synergistic interactions between habitat fragmentation and fire in evergreen tropical forests. Conserv Biol 15:1515–21.CrossRefGoogle Scholar
  15. Cochrane MA, Schulze MD. 1999. Fire as a recurrent event in tropical forests of the Eastern Amazon: effects on forest structure, biomass, and species composition. Biotropica 31:2–16.Google Scholar
  16. Crews TE. 1993. Phosphorus regulation of nitrogen fixation in a traditional Mexican agroecosystem. Biogeochemistry 21:141–66.CrossRefGoogle Scholar
  17. Crews TE, Farrington H, Vitousek PM. 2000. Changes in asymbiotic, heterotrophic nitrogen fixation on leaf litter of Metrosideros polymorpha with long-term ecosystem development in Hawaii. Ecosystems 3:386–95.CrossRefGoogle Scholar
  18. Darnajoux R, Zhang X, McRose DL, Miadlikowska J, Lutzoni F, Kraepiel AML, Bellenger JP. 2017. Biological nitrogen fixation by alternative nitrogenases in boreal cyanolichens: importance of molybdenum availability and implications for current biological nitrogen fixation estimates. New Phytol 213:680–9.PubMedCrossRefGoogle Scholar
  19. Davidson EA, de Carvalho CJR, Figueira AM, Ishida FY, Ometto JPHB, Nardoto GB, Sába RT, Hayashi SN, Leal EC, Vieira ICG, Martinelli LA. 2007. Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447:995–8.PubMedCrossRefGoogle Scholar
  20. Delitti WBC, Meguro M, Pausas JG. 2006. Biomass and mineralmass estimates in a ‘cerrado’ ecosystem. Braz J Bot 29:531–40.CrossRefGoogle Scholar
  21. Feldpausch TR, Couto EG, Rodrigues LC, Pauletto D, Johnson MS, Fahey TJ, Lehmann J, Riha SJ. 2010. Nitrogen aboveground turnover and soil stocks to 8 m depth in primary and selectively logged forest in southern Amazonia. Glob Change Biol 16:1793–805.CrossRefGoogle Scholar
  22. Figueira AMS, Davidson EA, Nagy RC, Riskin SH, Martinelli LA. 2016. Isotopically constrained soil carbon and nitrogen budgets in a soybean field chronosequence in the Brazilian Amazon region. J Geophys Res Biogeosci 121:2520–9.CrossRefGoogle Scholar
  23. Gei M, Rozendaal DMA, Poorter L, Bongers F, Sprent JI, Garner MD, Aide TM, Andrade JL, Balvanera P, Becknell JM, Brancalion PHS, Cabral GAL, César RG, Chazdon RL, Cole RJ, Colletta GD, De Jong B, Denslow JS, Dent DH, Dewalt SJ, Dupuy JM, Durán SM, Do Espírito Santo MM, Fernandes GW, Nunes YRF, Finegan B, Moser VG, Hall JS, Hernández-Stefanoni JL, Junqueira AB, Kennard D, Lebrija-Trejos E, Letcher SG, Lohbeck M, Marín-Spiotta E, Martínez-Ramos M, Meave JA, Menge DNL, Mora F, Muñoz R, Muscarella R, Ochoa-Gaona S, Orihuela-Belmonte E, Ostertag R, Peña-Claros M, Pérez-García EA, Piotto D, Reich PB, Reyes-García C, Rodríguez-Velázquez J, Romero-Pérez IE, Sanaphre-Villanueva L, Sanchez-Azofeifa A, Schwartz NB, De Almeida AS, Almeida-Cortez JS, Silver W, De Souza Moreno V, Sullivan BW, Swenson NG, Uriarte M, Van Breugel M, Van Der Wal H, Veloso MDDM, Vester HFM, Vieira ICG, Zimmerman JK, Powers JS. 2018. Legume abundance along successional and rainfall gradients in Neotropical forests. Nat Ecol Evol 2:1104–11.PubMedCrossRefGoogle Scholar
  24. Gei MG. 2014. Biological nitrogen fixation in tropical dry forests of Costa Rica: patterns and controls. University of Minnesota, PhD dissertation.Google Scholar
  25. Germer S, Neill C, Vetter T, Chaves J, Krusche AV, Elsenbeer H. 2009. Implications of long-term land-use change for the hydrology and solute budgets of small catchments in Amazonia. J Hydrol 364:349–63.CrossRefGoogle Scholar
  26. Hardy RWF, Holsten RD, Jackson EK, Burns RC. 1968. The acetylene–ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol 43:1185–207.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Haynes RJ. 1982. Effects of liming on phosphate availability in acid soils—a critical review. Plant Soil 68:289–308.CrossRefGoogle Scholar
  28. Hedin LO, Brookshire ENJ, Menge DNL, Barron AR. 2009. The nitrogen paradox in tropical forest ecosystems. Annu Rev Ecol Evol Syst 40:613–35.CrossRefGoogle Scholar
  29. Hedin LO, Vitousek PM, Matson PA. 2003. Nutrient losses over four million years of tropical forest development. Ecology 84:2231–55.CrossRefGoogle Scholar
  30. Hendricks JJ, Boring LR. 1999. N2-fixation by native herbaceous legumes in burned pine ecosystems of the southeastern United States. For Ecol Manag 113:167–77.CrossRefGoogle Scholar
  31. Hobbs NT, Schimel DSS. 1984. Fire effects on nitrogen mineralization and fixation in mountain shrub and grassland communities. J Rangel Manag 37:402–5.CrossRefGoogle Scholar
  32. Houlton BZ, Sigman DM, Hedin LO. 2006. Isotopic evidence for large gaseous nitrogen losses from tropical rainforests. Proc Natl Acad Sci USA 103:8745–50.PubMedCrossRefGoogle Scholar
  33. Ivanauskas NM, Monteiro R, Rodrigues RR. 2003. Alterations following a fire in a forest community of Alto Rio Xingu. For Ecol Manag 184:239–50.CrossRefGoogle Scholar
  34. Jankowski KJ, Neill C, Davidson EA, Macedo MN, Costa C, Galford GL, Maracahipes Santos L, Lefebvre P, Nunes D, Cerri CEP, McHorney R, O’Connell C, Coe MT. 2018. Deep soils modify environmental consequences of increased nitrogen fertilizer use in intensifying Amazon agriculture. Sci Rep 8:1–11.CrossRefGoogle Scholar
  35. Jean ME, Phalyvong K, Forest-Drolet J, Bellenger JP. 2013. Molybdenum and phosphorus limitation of asymbiotic nitrogen fixation in forests of Eastern Canada: influence of vegetative cover and seasonal variability. Soil Biol Biochem 67:140–6.CrossRefGoogle Scholar
  36. Jordan C, Caskey W, Escalante G, Herrera R, Montagnini F, Todd R, Uhl C. 1983. Nitrogen dynamics during conversion of primary Amazonian rain forest to slash and burn agriculture. Oikos 40:131–9.CrossRefGoogle Scholar
  37. Kauffman JB, Till KM, Shea RW. 1992. Biogeochemistry of deforestation and biomass burning. In: O’Brien D, Ed. The science of global change. Washington: ACS Symposium Series. p 428–56.Google Scholar
  38. Ley RE, D’Antonio CM. 1998. Exotic grass invasion alters potential rates of N fixation in Hawaiian woodlands. Oecologia 113:179–87.PubMedCrossRefGoogle Scholar
  39. Mahowald NM, Artaxo P, Baker AR, Jickells TD, Okin GS, Randerson JT, Townsend AR. 2005. Impacts of biomass burning emissions and land use change on Amazonian atmospheric phosphorus cycling and deposition. Glob Biogeochem Cycles 19:1–15.Google Scholar
  40. Martin AR, Erickson DL, Kress WJ, Thomas SC. 2014. Wood nitrogen concentrations in tropical trees: phylogenetic patterns and ecological correlates. New Phytol 204:484–95.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Martinelli LA, Lins SRM, dos Santos-Silva JC. 2017. Fine litterfall in the Brazilian Atlantic Forest. Biotropica 49:443–51.CrossRefGoogle Scholar
  42. Martinelli LA, Piccolo MC, Townsend AR, Vitousek PM, Cuevas E, McDowell W, Robertson GP, Santos OC, Treseder K. 1999. Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46:45–65.Google Scholar
  43. Matzek V, Vitousek P. 2003. Nitrogen fixation in bryophytes, lichens, and decaying wood along a soil-age gradient in Hawaiian montane rain forest. Biotropica 35:12–19.Google Scholar
  44. McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G. 2003. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–12.CrossRefGoogle Scholar
  45. Menge DNL, Lichstein JW, Ángeles-Pérez G. 2014. Nitrogen fixation strategies can explain the latitudinal shift in nitrogen-fixing tree abundance. Ecology 95:2236–45.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Nardoto GB, Bustamante MMDC. 2003. Effects of fire on soil nitrogen dynamics and microbial biomass in savannas of Central Brazil. Pesqui Agropecu Bras 38:955–62.CrossRefGoogle Scholar
  47. Nardoto GB, Quesada CA, Patiño S, Saiz G, Baker TR, Schwarz M, Schrodt F, Feldpausch TR, Domingues TF, Marimon BS, Marimon Junior B-H, Vieira ICG, Silveira M, Bird MI, Phillips OL, Lloyd J, Martinelli LA. 2014. Basin-wide variations in Amazon forest nitrogen-cycling characteristics as inferred from plant and soil 15N:14N measurements. Plant Ecol Divers 7:173–87.CrossRefGoogle Scholar
  48. Neary DG, Klopatek CC, DeBano LF, Ffolliott PF. 1999. Fire effects on belowground sustainability: a review and synthesis. For Ecol Manag 122:51–71.CrossRefGoogle Scholar
  49. Neill C, Deegan LA, Thomas SM, Cerri CC. 2001. Deforestation for pasture alters nitrogen and phosphorus in small Amazonian streams. Ecol Appl 11:1817–28.CrossRefGoogle Scholar
  50. Neill C, Piccolo MC, Steudler PA, Melillo JM, Feigl BJ, Cerri CC. 1995. Nitrogen dynamics in soils of forests and active pastures in the western Brazilian Amazon Basin. Soil Biol Biochem 27:1167–75.CrossRefGoogle Scholar
  51. Nepstad DC, de Carvalho CR, Davidson EA, Jipp PH, Lefebvre PA, Negreiros GH, da Silva ED, Stone TA, Trumbore SE, Vieira S. 1994. The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372:666–9.CrossRefGoogle Scholar
  52. Newbold JD, Sweeney BW, Jackson JK, Kaplan LA. 1995. Concentrations and export of solutes from six mountain streams in northwestern Costa Rica. J N Am Benthol Soc 14:21–37.CrossRefGoogle Scholar
  53. O’Connell CS. 2015. Ecological tradeoffs to an agricultural Amazonia: investigating the effects of increased agricultural production on Amazonia’s contribution to global climate and nitrogen. University of Minnesota, PhD dissertation.Google Scholar
  54. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D. 2011. A large and persistent carbon sink in the world’s forests. Science 333:988–93.PubMedCrossRefGoogle Scholar
  55. Perakis SS, Hedin LO. 2002. Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature 415:416–19.PubMedCrossRefGoogle Scholar
  56. Pinto-Tomás AA, Anderson MA, Suen G, Stevenson DM, Chu FST, Cleland WW, Weimer PJ, Currie CR. 2009. Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326:1120–3.PubMedCrossRefGoogle Scholar
  57. Projeto R. 1981. Folha SD.22 Goiàs. In: Geologia, geomorphologia, pedologia, vegetaçao, uso potencial da terra. Rio de Janeiro: Ministério das Minas e Energia, Departamento Nacional de Mineral, Fundução.Google Scholar
  58. Quesada CA, Lloyd J, Anderson LO, Fyllas NM, Schwarz M, Czimczik CI. 2011. Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences 8:1415–40.CrossRefGoogle Scholar
  59. Reddy KJ, Gloss SP. 1993. Geochemical speciation as related to the mobility of F, Mo and Se in soil leachates. Appl Geochem 8:159–63.CrossRefGoogle Scholar
  60. Reed SC, Cleveland CC, Townsend AR. 2007. Controls over leaf litter and soil nitrogen fixation in two lowland tropical rain forests. Biotropica 39:585–92.CrossRefGoogle Scholar
  61. Reed SC, Cleveland CC, Townsend AR. 2008. Tree species control rates of free-living nitrogen fixation in a tropical rain forest. Ecology 89:2924–34.PubMedCrossRefGoogle Scholar
  62. Reed SC, Cleveland CC, Townsend AR. 2013. Relationships among phosphorus, molybdenum and free-living nitrogen fixation in tropical rain forests: results from observational and experimental analyses. Biogeochemistry 114:135–47.CrossRefGoogle Scholar
  63. Riskin SH, Neill C, Jankowski K, Krusche AV, McHorney R, Elsenbeer H, Macedo MN, Nunes D, Porder S. 2017. Solute and sediment export from Amazon forest and soybean headwater streams. Ecol Appl 27:193–207.PubMedCrossRefGoogle Scholar
  64. Riskin SH, Porder S, Neill C, Silva Figueira AM, Tubbesing C, Mahowald N. 2013. The fate of phosphorus fertilizer in Amazon soya bean fields. Philos Trans R Soc B Biol Sci 368:1–10.CrossRefGoogle Scholar
  65. Rocha W, Metcalfe DB, Doughty CE, Brando P, Silvério D, Halladay K, Nepstad DC, Balch JK, Malhi Y. 2014. Ecosystem productivity and carbon cycling in intact and annually burnt forest at the dry southern limit of the Amazon rainforest (Mato Grosso, Brazil). Plant Ecol Divers 7:25–40.CrossRefGoogle Scholar
  66. Russell AE, Vitousek PM. 1997. Decomposition and potential nitrogen fixation in Dicranopteris linearis litter on Mauna Loa, Hawai’i. J Trop Ecol 13:579–94.CrossRefGoogle Scholar
  67. Sanches L, Valentini CMA, Pinto Júnior OB, Nogueira JS, Vourlitis GL, Biudes MS, da Silva CJ, Bambi P, Lobo FA. 2008. Seasonal and interannual litter dynamics of a tropical semideciduous forest of the southern Amazon Basin, Brazil. J Geophys Res Biogeosci 113:1–9.CrossRefGoogle Scholar
  68. Schroth G, da Silva LF, Seixas R, Geraldes W, Macêdo JLV, Zech W. 1999. Subsoil accumulation of mineral nitrogen under polyculture and monoculture plantations, fallow and primary forest in a ferralitic Amazonian upland soil. Agric Ecosyst Environ 75:109–20.CrossRefGoogle Scholar
  69. Silvério DV, Brando PM, Balch JK, Putz FE, Nepstad DC, Oliveira-Santos C, Bustamante MC. 2013. Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses. Philos Trans R Soc B Biol Sci 368:1–8.CrossRefGoogle Scholar
  70. Soper FM, Taylor PG, Wieder WR, Weintraub SR, Cleveland CC, Porder S, Townsend AR. 2017. Modest gaseous nitrogen losses point to conservative nitrogen cycling in a lowland tropical forest watershed. Ecosystems 21:901–12.CrossRefGoogle Scholar
  71. ter Steege H, Pitman NCA, Phillips OL, Chave J, Sabatier D, Duque A, Molino JF, Prévost MF, Spichiger R, Castellanos H, Von Hildebrand P, Vásquez R. 2006. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443:444–7.PubMedCrossRefGoogle Scholar
  72. Sullivan BW, Nifong RL, Nasto MK, Alvarez-Clare S, Dencker C, Soper FM, Shoemaker KT, Ishida FY, Zaragoza-Castells J, Davidson EA, Cleveland CC. 2019. Biogeochemical recuperation of lowland tropical forest during succession. Ecology 100:1–14.CrossRefGoogle Scholar
  73. Sullivan BW, Smith WK, Townsend AR, Nasto MK, Reed SC, Chazdon RL, Cleveland CC. 2014. Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle. Proc Natl Acad Sci USA 111:8101–6.PubMedCrossRefGoogle Scholar
  74. Sylvester-Bradley R, de Oliveira LA, de Podestá Filho JA, St. John TV. 1980. Nodulation of legumes, nitrogenase activity of roots and occurrence of nitrogen-fixing Azospirillum ssp. in representative soils of central Amazonia. Agro-Ecosystems 6:249–66.CrossRefGoogle Scholar
  75. Taylor BN, Chazdon RL, Menge DNL. 2019. Successional dynamics of nitrogen fixation and forest growth in regenerating Costa Rican rainforests. Ecology 100:1–13.Google Scholar
  76. Taylor BN, Menge DNL. 2018. Light regulates tropical symbiotic nitrogen fixation more strongly than soil nitrogen. Nat Plants 4:655–61.PubMedCrossRefGoogle Scholar
  77. Taylor SR, McLennan SM. 1995. The geochemical evolution of the continental crust. Rev Geophys 33:241.CrossRefGoogle Scholar
  78. Tierney JA, Hedin LO, Wurzburger N. 2019. Nitrogen fixation does not balance fire-induced nitrogen losses in longleaf pine savannas. Ecology 100:1–15.CrossRefGoogle Scholar
  79. Townsend AR, Asner GP, Cleveland CC. 2008. The biogeochemical heterogeneity of tropical forests. Trends Ecol Evol 23:424–31.PubMedCrossRefGoogle Scholar
  80. Uhl C, Kauffman JB. 1990. Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon. Ecology 71:437–49.CrossRefGoogle Scholar
  81. Varella RF, Bustamante MMC, Pinto AS, Kisselle KW, Santos RV, Burke RA, Zepp RG, Viana LT. 2004. Soil fluxes of CO2, CO, NO, and N2O from and old pasture and from native savanna in Brazil. Ecol Appl 14:S221–31.CrossRefGoogle Scholar
  82. Veneklaas EJ. 1991. Litterfall and nutrient fluxes in two montane tropical rain forests. J Trop Ecol 7:319–36.CrossRefGoogle Scholar
  83. Vitousek P, Hobbie S. 2000. Heterotrophic nitrogen fixation in decomposing litter: patterns and regulation. Ecology 81:2366–76.CrossRefGoogle Scholar
  84. Vitousek PM. 1984. Litterfall, nutrient cycling, and nutrient fimitation in tropical forests. Ecology 65:285–98.CrossRefGoogle Scholar
  85. Vitousek PM, Howarth RW. 1991. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115.CrossRefGoogle Scholar
  86. Vitousek PM, Sanford RL. 1986. Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–67.CrossRefGoogle Scholar
  87. Winbourne JB, Brewer SW, Houlton BZ. 2017. Iron controls over di-nitrogen fixation in karst tropical forest. Ecology 98:773–81.PubMedCrossRefGoogle Scholar
  88. Winbourne JB, Feng A, Reynolds L, Piotto D, Hastings MG, Porder S. 2018a. Nitrogen cycling during secondary succession in Atlantic Forest of Bahia, Brazil. Sci Rep 8:1–9.CrossRefGoogle Scholar
  89. Winbourne JB, Harrison MT, Sullivan BW, Alvarez-Clare S, Lins SR, Martinelli L, Nasto M, Piotto D, Rolim S, Wong M, Porder S. 2018b. A new framework for evaluating estimates of symbiotic nitrogen fixation in forests. Am Nat 192:618–29.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Wright SJ, Turner BL, Yavitt JB, Harms KE, Kaspari M, Tanner EVJ, Bujan J, Griffin EA, Mayor JR, Pasquini SC, Sheldrake M, Garcia MN. 2018. Plant responses to fertilization experiments in lowland, species-rich, tropical forests. Ecology 99:1129–38.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Wurzburger N, Bellenger JP, Kraepiel AML, Hedin LO. 2012. Molybdenum and phosphorus interact to constrain asymbiotic nitrogen fixation in tropical forests. PLoS ONE 7:1–7.CrossRefGoogle Scholar
  92. Wurzburger N, Hedin LO. 2016. Taxonomic identity determines N2 fixation by canopy trees across lowland tropical forests. Ecol Lett 19:62–70.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Yamada A, Inoue T, Wiwatwitaya D, Ohkuma M, Kudo T, Sugimoto A. 2006. Nitrogen fixation by termites in tropical forests, Thailand. Ecosystems 9:75–83.CrossRefGoogle Scholar
  94. Yelenik S, Perakis S, Hibbs D. 2013. Regional constraints to biological nitrogen fixation in post-fire forest communities. Ecology 94:739–50.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Michelle Y. Wong
    • 1
    Email author
  • Christopher Neill
    • 2
  • Roxanne Marino
    • 1
  • Divino V. Silvério
    • 3
  • Paulo M. Brando
    • 2
    • 3
    • 4
  • Robert W. Howarth
    • 1
  1. 1.Department of Ecology and Evolutionary BiologyCornell UniversityIthacaUSA
  2. 2.Woods Hole Research CenterFalmouthUSA
  3. 3.Instituto de Pesquisa Ambiental da AmazôniaBrasíliaBrazil
  4. 4.Department of Earth System ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations