Advertisement

Ecosystems

pp 1–15 | Cite as

Effects of Nitrogen Deposition on the Abundance and Metabolism of Lichens: A Meta-analysis

  • Blanca Gutiérrez-Larruga
  • Belén Estébanez-Pérez
  • Raúl Ochoa-HuesoEmail author
Article

Abstract

Lichens are the key to nutrient cycling and trophic networks in many terrestrial ecosystems and are good bioindicators of air pollution, including nitrogen (N) deposition. Experimental studies have shown that N deposition can reduce the abundance of lichens and alter their thallus chemistry and metabolism, but we currently lack information about how widespread this effect is and what are the environmental factors modulating the response of lichens to N. We carried out a meta-analysis of the literature about the effects of experimental N fertilization on lichen abundance and metabolism. We found thirty-nine articles from thirty-one experimental sites that met our search criteria. These studies showed that the addition of N accelerates lichen metabolism in the short term and decreases their abundance in the medium–long term. Early senescence of lichens is proposed as a possible mechanism linking the two observed responses. Chlorolichens from regions with high precipitation (> 1000 mm) and with a background N deposition of mixed origin (agricultural and industrial) were the most affected by N, in terms of both abundance and metabolism. Structural equation modelling showed that the rate of N addition was the main factor in modulating the response of lichens to N in terms of metabolism, whereas isothermality played a very important role in modulating the lichen response to N in terms of abundance. Our meta-analysis identified that excess N deposition reduces lichen abundance and increases the metabolism of sensitive species, especially across European ecosystems; lichens from more climatically benign regions (that is, greater precipitation and isothermality) are the most affected.

Keywords

Global change Lichens Meta-analysis Nitrogen deposition Nitrogen fertilization Structural equations models (SEM) 

Notes

Acknowledgements

ROH initiated this study being funded by a Juan de la Cierva-Incorporación Fellowship (JCI-2014-21252) from MINECO and finished it with the support of a Ramón y Cajal Fellowship (RYC-2017-22032) from MICIU. All data used in this study can be accessed from Ochoa-Hueso and Gutierrez-Larruga (2019). https://figshare.com/articles/Effects_of_nitrogen_deposition_on_the_abundance_and_metabolism_of_lichens_A_meta-analysis/9211502.

Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.

Supplementary material

10021_2019_431_MOESM1_ESM.emf (878 kb)
Supplementary material 1 (EMF 878 kb)
10021_2019_431_MOESM2_ESM.docx (105 kb)
Supplementary material 2 (DOCX 105 kb)
10021_2019_431_MOESM3_ESM.csv (27 kb)
Supplementary Table 1. Spearman rank correlations between environmental and procedural variables and the lnRR of abundance-related metrics (CSV 26 kb)
10021_2019_431_MOESM4_ESM.csv (25 kb)
Supplementary Table 2. Spearman rank correlations between environmental and procedural variables and the lnRR of metabolism-related metrics (CSV 24 kb)

References

  1. Asplund J, Johansson O, Nybakken L, Palmqvist K, Gauslaa Y. 2010. Simulated nitrogen deposition influences gastropod grazing in Lichens. Ecoscience 17:83–9.CrossRefGoogle Scholar
  2. Asplund J, Wardle DA. 2016. How lichens impact on terrestrial community and ecosystem properties. Biol Rev 92:1720–38.CrossRefGoogle Scholar
  3. Bähring A, Fichtner A, Ibe K, Schütze G, Temperton VM, von Oheimb G, Härdtle W. 2017. Ecosystem functions as indicators for heathland responses to nitrogen fertilisation. Ecol Indic 72:185–93.CrossRefGoogle Scholar
  4. Barker CG. 2001. The impact of management on heathland response to increased nitrogen deposition.Google Scholar
  5. Benner JW, Vitousek PM. 2007. Development of a diverse epiphyte community in response to phosphorus fertilization. Ecol Lett 10:628–36.CrossRefGoogle Scholar
  6. Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman J-W, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W. 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59.CrossRefGoogle Scholar
  7. Bobbink R, Hornung M, Roelofs JGM. 1998. The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86:717–38.CrossRefGoogle Scholar
  8. Bokhorst S, Asplund J, Kardol P, Wardle DA. 2015. Lichen physiological traits and growth forms affect communities of associated invertebrates. Ecology 96:2394–407.CrossRefGoogle Scholar
  9. Britton AJ, Fisher JM. 2007. Interactive effects of nitrogen deposition, fire and grazing on diversity and composition of low-alpine prostrate Calluna vulgaris heathland. J Appl Ecol 44:125–35.CrossRefGoogle Scholar
  10. Carroll JA, Caporn SJM, Cawley L, Read DJ, Lee JA. 1999. The effect of increased deposition of atmospheric nitrogen on Calluna vulgaris in upland Britain. New Phytol 141:423–31.CrossRefGoogle Scholar
  11. Conti ME, Cecchetti G. 2001. Biological monitoring: lichens as bioindicators of air pollution assessment—a review. Environ Pollut 114:471–92.CrossRefGoogle Scholar
  12. Coyle JR, Hurlbert AH. 2016. Environmental optimality, not heterogeneity, drives regional and local species richness in lichen epiphytes. Glob Ecol Biogeogr 25:406–17.CrossRefGoogle Scholar
  13. Dahlman L, Näsholm T, Palmqvist K. 2002. Growth, nitrogen uptake, and resource allocation in the two tripartite lichens Nephroma arcticum and Peltigera aphthosa during nitrogen stress. New Phytol 153:307–15.CrossRefGoogle Scholar
  14. Davies L, Bates JW, Bell JNB, James PW, Purvis OW. 2007. Diversity and sensitivity of epiphytes to oxides of nitrogen in London. Environ Pollut 146:299–310.CrossRefGoogle Scholar
  15. Delgado-Baquerizo M, Maestre FTFT, Escolar C, Gallardo A, Ochoa V, Gozalo B, Prado-Comesaña A. 2014. Direct and indirect impacts of climate change on microbial and biocrust communities alter the resistance of the N cycle in a semiarid grassland. Wardle D, editor. J Ecol 102:1592–605. http://www.scopus.com/inward/record.url?eid=2-s2.0-84925743315&partnerID=tZOtx3y1. Accessed 16 Apr 2015.
  16. Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B, Fiore AM, Hauglustaine D, Horowitz LW, Krol M, Kulshrestha UC, Lawrence M, Galy-Lacaux C, Rast S, Shindell D, Stevenson D, Van Noije T, Atherton C, Bell N, Bergman D, Butler T, Cofala J, Collins B, Doherty R, Ellingsen K, Galloway J, Gauss M, Montanaro V, Müller JF, Pitari G, Rodriguez J, Sanderson M, Solmon F, Strahan S, Schultz M, Sudo K, Szopa S, Wild O. 2006. Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Global Biogeochem Cycles 20:GB4003.  https://doi.org/10.1029/2005GB002672.CrossRefGoogle Scholar
  17. Eisenhauer N, Bowker MA, Grace JB, Powell JR. 2015. From patterns to causal understanding: structural equation modeling (SEM) in soil ecology. Pedobiologia (Jena). http://linkinghub.elsevier.com/retrieve/pii/S0031405615000281
  18. Eriksson O, Raunistola T. 1993. Impact of forest fertilizers on winter pastures of reindeer. Rangifer 13:203–14.CrossRefGoogle Scholar
  19. Fenn MEMME, Baron JSJSJ, Allen EBEBE, Rueth HMHMH, Nydick KRK, Geiser L, Bowman WDWWD, Sickman JOJJO, Meixner T, Johnson DWDDW, Neitlich P. 2003. Ecological effects of nitrogen deposition in the Western United States. Bioscience 53:404.CrossRefGoogle Scholar
  20. Fremstad E, Paal J, Möls T. 2005. Impacts of increased nitrogen supply on Norwegian lichen-rich alpine communities: a 10-year experiment. J Ecol 93:471–81.CrossRefGoogle Scholar
  21. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226.CrossRefGoogle Scholar
  22. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–92.CrossRefGoogle Scholar
  23. Gordon C, Wynn JM, Woodin SJ. 2001. Impacts of increased nitrogen supply on high Arctic heath: the importance of bryophytes and phosphorus availability. New Phytol 149:461–71.CrossRefGoogle Scholar
  24. Gough L, Hobbie SE. 2003. Responses of moist non-acidic arctic tundra to altered environment: productivity, biomass, and species richness. Oikos 103:204–16.CrossRefGoogle Scholar
  25. Gough L, Wookey PA, Shaver GR. 2002. Dry heath arctic tundra responses to long-term nutrient and light manipulation. Arctic Antarct Alp Res 34:211–18.CrossRefGoogle Scholar
  26. Grace JB. 2006. Structural equation modeling and natural systems. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  27. Hauck M. 2010. Ammonium and nitrate tolerance in lichens. Environ Pollut 158:1127–33.CrossRefGoogle Scholar
  28. Hedges LV, Gurevitch J, Curtis PS. 1999. The meta-analysis of response ratios in experimental ecology. Ecology 80:1150–6.CrossRefGoogle Scholar
  29. Helsper HPG, Glenn-Lewin D, Werger MJA. 1983. Early regeneration of Calluna heathland under various fertilization treatments. Oecologia 58:208–14.CrossRefGoogle Scholar
  30. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–78.CrossRefGoogle Scholar
  31. Hogan EJ, Minnullina G, Sheppard LJ, Leith ID, Crittenden PD. 2010. Response of phosphomonoesterase activity in the lichen Cladonia portentosa to nitrogen and phosphorus enrichment in a field manipulation experiment. New Phytol 186:926–33.CrossRefGoogle Scholar
  32. Holt EA, Miller SW. 2011. Bioindicators: using organisms to measure environmental impacts. Nat Educ Knowl 3:8.Google Scholar
  33. Horswill P, O’Sullivan O, Phoenix GK, Lee JA, Leake JR. 2008. Base cation depletion, eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition. Environ Pollut 155:336–49.CrossRefGoogle Scholar
  34. Jacobson S, Gustafsson L. 2001. Effects on ground vegetation of the application of wood ash to a Swedish Scots pine stand. Basic Appl Ecol 2:233–41.CrossRefGoogle Scholar
  35. Johansson O, Palmqvist K, Olofsson J. 2012. Nitrogen deposition drives lichen community changes through differential species responses. Glob Chang Biol 18:2626–35.CrossRefGoogle Scholar
  36. Kelley AM, Epstein HE. 2009. Effects of nitrogen fertilization on plant communities of nonsorted circles in moist nonacidic tundra, Northern Alaska. Arctic Antarct Alp Res 41:119–27.CrossRefGoogle Scholar
  37. Kellner O. 1993. Effects on associated flora of sylvicultural nitrogen fertilization repeated at long intervals. J Appl Ecol 30:563–74.CrossRefGoogle Scholar
  38. Lee JA, Caporn SJM. 1998. Ecological effects of atmospheric reactive nitrogen deposition on semi-natural terrestrial ecosystems. New Phytol 139:127–34.CrossRefGoogle Scholar
  39. Lee JA, Caporn SJM. 2000. Effects of enhanced atmospheric nitrogen deposition on semi-natural ecosystems. Prog Rep 1.Google Scholar
  40. Lefcheck JS. 2016. piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol Evol 7(5):573–9.CrossRefGoogle Scholar
  41. Nash TH. 2008. Nitrogen, its metabolism and potential contribution to ecosystems.Google Scholar
  42. Nilsson M-C, Wardle DA, Zackrisson O, Jäderlund A. 2002. Effects of alleviation of ecological stresses on an alpine tundra community over an eight-year period. Oikos 97:3–17.CrossRefGoogle Scholar
  43. Nybakken L, Johansson O, Palmqvist K. 2009. Defensive compound concentration in boreal lichens in response to simulated nitrogen deposition. Glob Chang Biol 15:2247–60.CrossRefGoogle Scholar
  44. Ochoa-Hueso R, Arróniz-Crespo M, Bowker MA, Maestre FT, Pérez-Corona ME, Theobald MR, Vivanco MG, Manrique E. 2014a. Biogeochemical indicators of elevated nitrogen deposition in semiarid Mediterranean ecosystems. Environ Monit Assess 186:5831–42.CrossRefGoogle Scholar
  45. Ochoa-Hueso R, Arróniz-Crespo M, Bowker MA, Maestre FT, Pérez-Corona ME, Theobald MR, Vivanco MG, Manrique E. 2014b. Biogeochemical indicators of elevated nitrogen deposition in semiarid Mediterranean ecosystems. Environ Monit Assess 186:5831–42.CrossRefGoogle Scholar
  46. Ochoa-Hueso R, Eldridge DJDJ, Delgado-Baquerizo M, Soliveres S, Bowker MAMA, Gross N, Le Bagousse-Pinguet Y, Quero JLJL, García-Gómez M, Valencia E, Arredondo T, Beinticinco L, Bran D, Cea A, Coaguila D, Dougill AJAJ, Espinosa CICI, Gaitán J, Guuroh RTRT, Guzman E, Gutiérrez JRJR, Hernández RMRM, Huber-Sannwald E, Jeffries T, Linstädter A, Mau RLRL, Monerris J, Prina A, Pucheta E, Stavi I, Thomas AD, Zaady E, Singh BKBK, Maestre FTFT. 2018. Soil fungal abundance and plant functional traits drive fertile island formation in global drylands. J Ecol 106:242–53.  https://doi.org/10.1111/1365-2745.12871.CrossRefGoogle Scholar
  47. Ochoa-Hueso R, Gutierrez-Larruga B. 2019. Effects of nitrogen deposition on the abundance and metabolism of lichens: a meta-analysis. figshare:Dataset.Google Scholar
  48. Ochoa-Hueso R, Manrique E. 2011. Effects of nitrogen deposition and soil fertility on cover and physiology of Cladonia foliacea (Huds.) Willd., a lichen of biological soil crusts from Mediterranean Spain. Environ Pollut 159:449–57.CrossRefGoogle Scholar
  49. Ochoa-Hueso R, Mejías-Sanz V, Pérez-Corona ME, Manrique E. 2013. Nitrogen deposition effects on tissue chemistry and phosphatase activity in Cladonia foliacea (Huds.) Willd., a common terricolous lichen of semi-arid Mediterranean shrublands. J Arid Environ 88:78–81.CrossRefGoogle Scholar
  50. Ochoa-Hueso R, Mondragon-Cortés T, Concostrina-Zubiri L, Serrano-Grijalva L, Estébanez B. 2017. Nitrogen deposition reduces the cover of biocrust-forming lichens and soil pigment content in a semiarid Mediterranean shrubland. Environ Sci Pollut Res 24(34):26172–84.CrossRefGoogle Scholar
  51. Olsson BA, Kellner O. 2006. Long-term effects of nitrogen fertilization on ground vegetation in coniferous forests. For Ecol Manag 237:458–70.CrossRefGoogle Scholar
  52. Palmqvist K, Dahlman L. 2006. Responses of the green algal foliose lichen Platismatia glauca to increased nitrogen supply. New Phytol 171:343–56.CrossRefGoogle Scholar
  53. Pilkington MG, Caporn SJM, Carroll JA, Cresswell N, Lee JA, Emmett BA, Bagchi R. 2007. Phosphorus supply influences heathland responses to atmospheric nitrogen deposition. Environ Pollut 148:191–200.CrossRefGoogle Scholar
  54. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. 2019. nlme: Linear and nonlinear mixed effects models. R package version 3.1-141.Google Scholar
  55. Pinho P, Martins-Loução M-A, Mäguas C, Branquinho C. 2014. Calibrating total nitrogen concentration in lichens with emissions of reduced nitrogen at the regional scale.Google Scholar
  56. Plaza C, Zaccone C, Sawicka K, Méndez AM, Tarquis A, Gascó G, Heuvelink GBM, Schuur EAG, Maestre FT. 2018. Soil resources and element stocks in drylands to face global issues. Sci Rep 8:13788.  https://doi.org/10.1038/s41598-018-32229-0.CrossRefGoogle Scholar
  57. Poisot T. 2011. The digitize package: extracting numerical data from scatterplots. R J 3(1):25–6.CrossRefGoogle Scholar
  58. Power SA, Green ER, Barker CG, Bell JNB, Ashmore MR. 2006. Ecosystem recovery: Heathland response to a reduction in nitrogen deposition. Glob Chang Biol 12:1241–52.CrossRefGoogle Scholar
  59. R Core Team. 2019. R: A language and environment for statistical computing.Google Scholar
  60. Reed SC, Maestre FT, Ochoa-Hueso R, Kuske CR, Darrouzet-Nardi A, Oliver M, Darby B, Sancho LG, Sinsabaugh RL, Belnap J. 2016. Biocrusts in the context of global change BT—biological soil crusts: an organizing principle in drylands. In: Weber B, Büdel B, Belnap J, Eds. Biological soil crusts: an organizing principle in drylands. Cham: Springer. p 451–76.  https://doi.org/10.1007/978-3-319-30214-0_22 CrossRefGoogle Scholar
  61. Root HT, Geiser LH, Fenn ME, Jovan S, Hutten MA, Ahuja S, Dillman K, Schirokauer D, Berryman S, McMurray JA. 2013. A simple tool for estimating throughfall nitrogen deposition in forests of western North America using lichens. For Ecol Manag 306:1–8.CrossRefGoogle Scholar
  62. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH. 2000. Global biodiversity scenarios for the year 2100. Science 287:1770–4.CrossRefGoogle Scholar
  63. Schwarzer G. 2007. Meta: an R package for meta-analysis. R news 7:40–5.Google Scholar
  64. Sheppard LJ, Leith ID, Mizunuma T, Neil Cape J, Crossley A, Leeson S, Sutton MA, Van Dijk N, Fowler D. 2011. Dry deposition of ammonia gas drives species change faster than wet deposition of ammonium ions: evidence from a long-term field manipulation. Glob Chang Biol 17:3589–607.CrossRefGoogle Scholar
  65. Skrindo A, Øland RH. 2002. Effects of fertilization on understorey vegetation in a Norwegian Pinus sylvestris forest. Appl Veg Sci 5:167–72.CrossRefGoogle Scholar
  66. Soudzilovskaia NA, Onipchenko VG, Cornelissen JHC, Aerts R. 2005. Biomass production, N:P ratio and nutrient limitation in a Caucasian alpine tundra plant community. J Veg Sci 16:399–406.CrossRefGoogle Scholar
  67. Sparrius LB, Kooijman AM, Sevink J. 2013. Response of inland dune vegetation to increased nitrogen and phosphorus levels. Appl Veg Sci 16:40–50.CrossRefGoogle Scholar
  68. Stevens CJ, Duprè C, Dorland E, Gaudnik C, Gowing DJG, Bleeker A, Diekmann M, Alard D, Bobbink R, Fowler D, Corcket E, Mountford JO, Vandvik V, Aarrestad PA, Muller S, Dise NB. 2010. Nitrogen deposition threatens species richness of grasslands across Europe. Environ Pollut 158:2940–5.CrossRefGoogle Scholar
  69. Stevens CJ, Lind EM, Hautier Y, Harpole WS, Borer ET, Hobbie S, Seabloom EW, Ladwig L, Bakker JD, Chu C, Collins S, Davies KF, Firn J, Hillebrand H, La Pierre KJ, MacDougall A, Melbourne B, McCulley RL, Morgan J, Orrock JL, Prober SM, Risch AC, Schuetz M, Wragg PD. 2015. Anthropogenic nitrogen deposition predicts local grassland primary production worldwide. Ecology 96:1459–65.CrossRefGoogle Scholar
  70. Sundberg B, Näsholm T, Palmqvist K. 2001. The effect of nitrogen on growth and key thallus components in the two tripartite lichens, Nephroma arcticum and Peltigera aphthosa. Plant Cell Environ 24:517–27.CrossRefGoogle Scholar
  71. Taboada A, Calvo-Fernández J, Marcos E, Calvo L. 2018. Plant and vegetation functional responses to cumulative high nitrogen deposition in rear-edge heathlands. Sci Total Environ 637–638:980–90.CrossRefGoogle Scholar
  72. Tomassen HBM, Smolders AJP, Limpens J, Lamers LPM, Roelofs JGM. 2004. Expansion of invasive species on ombrotrophic bogs: Desiccation or high N deposition? J Appl Ecol 41:139–50.CrossRefGoogle Scholar
  73. Vagts I, Kinder M. 1999. The response of different Cladonia species after treatment with fertilizer or lime in heathland. Lichenol 31:75–83.CrossRefGoogle Scholar
  74. van den Elzen E, van den Berg LJL, van der Weijden B, Fritz C, Sheppard LJ, Lamers LPM. 2018. Effects of airborne ammonium and nitrate pollution strongly differ in peat bogs, but symbiotic nitrogen fixation remains unaffected. Sci Total Environ 610–611:732–40.CrossRefGoogle Scholar
  75. Varela Río Z, Calvo Aranda S, Estébanez Pérez B, García Medina N, Boquete Seoane T. 2017. Empleo de criptógamas como herramienta ecológica de biomonitorización de nitrógeno en la península ibérica. Rev Ecosistemas 26:45–54.CrossRefGoogle Scholar
  76. Wang C-H, Munzi S, Wang M, Jia Y-Z, Tao W. 2019. Increasing nitrogen depositions can reduce lichen viability and limit winter food for an endangered Chinese monkey. Basic Appl Ecol 34:55–63.CrossRefGoogle Scholar
  77. Wang C-H, Wang M, Jia R-Z, Guo H. 2018. Thalli growth, propagule survival, and integrated physiological response to nitrogen stress of Ramalina calicaris var. Japonica in Shennongjia mountain (China). Front Plant Sci 9:568.CrossRefGoogle Scholar
  78. Wardle DA, Gundale MJ, Jäderlund A, Nilsson M-C. 2013. Decoupled long-term effects of nutrient enrichment on aboveground and belowground properties in subalpine tundra. Ecology 94:904–19.CrossRefGoogle Scholar
  79. Wolseley PA, James PW, Theobald MR, Sutton MA. 2006. Detecting changes in epiphytic lichen communities at sites affected by atmospheric ammonia from agricultural sources. Lichenol 38:161–76.CrossRefGoogle Scholar
  80. Zhou XB, Zhang YM, Yin BF. 2016. Divergence in physiological responses between cyanobacterial and lichen crusts to a gradient of simulated nitrogen deposition. Plant Soil 399:121–34.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Blanca Gutiérrez-Larruga
    • 1
  • Belén Estébanez-Pérez
    • 2
  • Raúl Ochoa-Hueso
    • 3
    Email author
  1. 1.Department of EcologyAutonomous University of MadridMadridSpain
  2. 2.Department of BiologyAutonomous University of MadridMadridSpain
  3. 3.Department of Biology, IVAGROUniversity of CádizPuerto Real, CádizSpain

Personalised recommendations