Advertisement

Ecosystems

pp 1–13 | Cite as

The Inhibitory Effects of Nitrogen Deposition on Asymbiotic Nitrogen Fixation are Divergent Between a Tropical and a Temperate Forest

  • Mianhai Zheng
  • Wei ZhangEmail author
  • Yiqi Luo
  • Shiqiang Wan
  • Shenglei Fu
  • Senhao Wang
  • Nan Liu
  • Qing Ye
  • Junhua Yan
  • Bi Zou
  • Chengliang Fang
  • Yuxi Ju
  • Denglong Ha
  • Liwei Zhu
  • Jiangming MoEmail author
Article
  • 98 Downloads

Abstract

Asymbiotic nitrogen (N) fixation (ANF) is an important source of N in pristine forests and is predicted to decrease with N deposition. Previous studies revealing N fixation in response to N deposition have mostly applied understory N addition approaches, neglecting the key processes (for example, N retention and uptake) occurring in forest canopy. This study evaluated the effects of N deposition on N fixation in the soil, forest floor, mosses, and canopy leaves in a temperate forest (in central China) and a tropical forest (in southern China) with different treatments: control, understory N addition, and canopy N addition. Results showed that total ANF rates were higher in the temperate forest (2.57 ± 0.19 mg N m−2 d−1) than in the tropical forest (1.34 ± 0.09 mg N m−2 d−1). N addition inhibited the soil, forest floor, moss, and foliar N fixation in the temperate forest, whereas it inhibited only the soil N fixation in the tropical forest. Compared to canopy N addition, understory N addition overestimated the inhibitory effects of N deposition on total ANF slightly in the tropical forest (by 35%) but severely in the temperate forest (by 375–472%) due to neglecting canopy retention of N. In summary, our findings indicate that ANF has different rates and sensitivities to N addition between tropical and temperate forests and that understory N addition overestimates the N deposition effects on ANF in forests, particularly in the temperate forest. These findings are important for our accurate understanding and estimate of terrestrial N fixation under N deposition scenarios.

Keywords

asymbiotic nitrogen fixation canopy nitrogen addition canopy nitrogen retention nitrogenase activity nitrogen deposition nitrogen fixation rates understory nitrogen addition 

Notes

Acknowledgements

We appreciate three anonymous reviewers for their constructive comments on the manuscript. We acknowledge financial supports from the National Natural Science Foundation of China (Nos. 31670488, 31370011, 31770523), the Natural Science Foundation of Guangdong Province (No. 2017A030313168), the National Postdoctoral Program for Innovative Talents (BX20180312), China Postdoctoral Science Foundation (2018M640836), and the UCAS Joint PhD Training Program. We thank Ms. Xiaoping Pan and Mr. Peng Mao for their assistance in laboratory and field experiments. The authors declare no conflict of interests.

Supplementary material

10021_2018_313_MOESM1_ESM.doc (318 kb)
Supplementary material 1 (DOC 318 kb)

References

  1. Adriaenssens S, Staelens J, Wuyts K, Samson R, Verheyen K, Boeckx P. 2012. Retention of dissolved inorganic nitrogen by foliage and twigs of four temperate tree species. Ecosystems 15:1093–107.CrossRefGoogle Scholar
  2. Barron AR, Wurzburger N, Bellenger JP, Wright SJ, Kraepiel AM, Hedin LO. 2008. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nat Geosci 2:42–5.CrossRefGoogle Scholar
  3. Batterman SA, Wurzburger N, Hedin LO. 2013. Nitrogen and phosphorus interact to control tropical symbiotic N2 fixation: a test in Inga punctata. J Ecol 101:1400–8.CrossRefGoogle Scholar
  4. Bremner J, Mulvaney C. 1982. Nitrogen-total. In: Page AL, Ed. Methods of soil analysis. Part 2. Chemical and microbiological properties. Madison, WI: American Society of Agronomy. p 595–624.Google Scholar
  5. Brookshire E, Gerber S, Menge DN, Hedin LO. 2012. Large losses of inorganic nitrogen from tropical rainforests suggest a lack of nitrogen limitation. Ecol Lett 15:9–16.CrossRefGoogle Scholar
  6. Chen H, Li D, Gurmesa GA, Yu G, Li L, Zhang W, Fang H, Mo J. 2015. Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: A meta-analysis. Environ Pollut 206:352–60.CrossRefGoogle Scholar
  7. Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, Von Fischer JC, Elseroad A. 1999. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem Cy 13:623–45.CrossRefGoogle Scholar
  8. Crews TE, Farrington H, Vitousek PM. 2000. Changes in asymbiotic, heterotrophic nitrogen fixation on leaf litter of Metrosideros polymorpha with long-term ecosystem development in Hawaii. Ecosystems 3:386–95.CrossRefGoogle Scholar
  9. Cusack DF, Silver W, McDowell WH. 2009. Biological Nitrogen Fixation in Two Tropical Forests: Ecosystem-Level Patterns and Effects of Nitrogen Fertilization. Ecosystems 12:1299–315.CrossRefGoogle Scholar
  10. Dail DB, Hollinger DY, Davidson EA, Fernandez I, Sievering HC, Scott NA, Gaige E. 2009. Distribution of nitrogen15 tracers applied to the canopy of a mature spruce-hemlock stand, Howland, Maine, USA. Oecologia 160:589–99.CrossRefGoogle Scholar
  11. DeLuca TH, Zackrisson O, Gundale MJ, Nilsson MC. 2008. Ecosystem feedbacks and nitrogen fixation in boreal forests. Science 320:1181.CrossRefGoogle Scholar
  12. Dynarski KA, Houlton BZ. 2018. Nutrient limitation of terrestrial free-living nitrogen fixation. New Phytol 217:1050–61.CrossRefGoogle Scholar
  13. Fang YT, Gundersen P, Mo JM, Zhu WX. 2008. Input and output of dissolved organic and inorganic nitrogen in subtropical forests of South China under high air pollution. Biogeosciences 5:339–52.CrossRefGoogle Scholar
  14. Fenn ME, Ross CS, Schilling SL, Baccus WD, Larrabee MA, Lofgren RA. 2013. Atmospheric deposition of nitrogen and sulfur and preferential canopy consumption of nitrate in forests of the Pacific Northwest, USA. Forest Ecol Manag 302:240–53.CrossRefGoogle Scholar
  15. Gaige E, Dail DB, Hollinger DY, Davidson EA, Fernandez IJ, Sievering H, White A, Halteman W. 2007. Changes in Canopy Processes Following Whole-Forest Canopy Nitrogen Fertilization of a Mature Spruce-Hemlock Forest. Ecosystems 10:1133–47.CrossRefGoogle Scholar
  16. Galloway JN. 1998. The global nitrogen cycle: changes and consequences. Environ Pollut 102:15–24.CrossRefGoogle Scholar
  17. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland C, Green P, Holland E. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226.CrossRefGoogle Scholar
  18. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–92.CrossRefGoogle Scholar
  19. Gei M, Rozendaal DM, Poorter L, Bongers F, Sprent JI, Garner MD, Aide TM, Andrade JL, Balvanera P, Becknell JM. 2018. Legume abundance along successional and rainfall gradients in Neotropical forests. Nat Ecol Evol 2:1104–11.CrossRefGoogle Scholar
  20. Gilliam FS, Yurish BM, Adams MB. 1996. Ecosystem nutrient responses to chronic nitrogen inputs at Fernow Experimental Forest, West Virginia. Can J Forest Res 26:196–205.CrossRefGoogle Scholar
  21. Gilliam FS, Billmyer JH, Walter CA, Peterjohn WT. 2016. Effects of excess nitrogen on biogeochemistry of a temperate hardwood forest: Evidence of nutrient redistribution by a forest understory species. Atmos Environ 146:261–70.CrossRefGoogle Scholar
  22. Gutschick VP. 1981. Evolved strategies in nitrogen acquisition by plants. Am Nat 118:607–37.CrossRefGoogle Scholar
  23. Gundale MJ, Deluca TH, Nordin A. 2011. Bryophytes attenuate anthropogenic nitrogen inputs in boreal forests. Global Change Biol 17:2743–53.CrossRefGoogle Scholar
  24. Hällbom L, Bergman B. 1979. Influence of certain herbicides and a forest fertilizer on the nitrogen fixation by the lichen Peltigera praetextata. Oecologia 40:19–27.CrossRefGoogle Scholar
  25. Hardy RW, Holsten R, Jackson E, Burns R. 1968. The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant physiol 43:1185–207.CrossRefGoogle Scholar
  26. Hedin LO, Brookshire EJ, Menge DN, Barron AR. 2009. The nitrogen paradox in tropical forest ecosystems. Annu Rev Ecol Evol Syst 40:613–35.CrossRefGoogle Scholar
  27. Houle D, Marty C, Duchesne L. 2015. Response of canopy nitrogen uptake to a rapid decrease in bulk nitrate deposition in two eastern Canadian boreal forests. Oecologia 177:29–37.CrossRefGoogle Scholar
  28. Houlton BZ, Wang YP, Vitousek PM, Field CB. 2008. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:327–30.CrossRefGoogle Scholar
  29. Keuter A, Veldkamp E, Corre MD. 2014. Asymbiotic biological nitrogen fixation in a temperate grassland as affected by management practices. Soil Biol Biochem 70:38–46.CrossRefGoogle Scholar
  30. Klopatek JM, Barry MJ, Johnson DW. 2006. Potential canopy interception of nitrogen in the Pacific Northwest, USA. Forest Ecol Manag 234:344–54.CrossRefGoogle Scholar
  31. Leppänen SM, Salemaa M, Smolander A, Mäkipää R, Tiirola M. 2013. Nitrogen fixation and methanotrophy in forest mosses along a N deposition gradient. Environ Exp Bot 90:62–9.CrossRefGoogle Scholar
  32. Liu G. 1996. Standard methods for the observation and analysis of Chinese ecosystem research network: soil analysis and profile description. Beijing: Standards Press of China.Google Scholar
  33. Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P. 2013. Enhanced nitrogen deposition over China. Nature 494:459–62.CrossRefGoogle Scholar
  34. Matson AL, Corre MD, Burneo JI, Veldkamp E. 2015. Free-living nitrogen fixation responds to elevated nutrient inputs in tropical montane forest floor and canopy soils of southern Ecuador. Biogeochemistry 122:281–94.CrossRefGoogle Scholar
  35. Matson PA, McDOWELL WH, Townsend AR, Vitousek PM. 1999. The globalization of N deposition: ecosystem consequences in tropical environments. Biogeochemistry 46:67–83.Google Scholar
  36. Moyes AB, Kueppers LM, Pett-Ridge J, Carper DL, Vandehey N, O’Neil J, Frank AC. 2016. Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer. New Phytol 2:657–68.CrossRefGoogle Scholar
  37. Nohrstedt HÖ. 1988. Effect of liming and N-fertilization on denitrification and N2-fixation in an acid coniferous forest floor. Forest Ecol Manag 24:1–13.CrossRefGoogle Scholar
  38. O’connell A, Grove T, Malajczuk N. 1979. Nitrogen fixation in the litter layer of eucalypt forests. Soil Biol Biochem 11:681–2.CrossRefGoogle Scholar
  39. Perakis S, Pett-Ridge JC, Catricala CE. 2017. Nutrient feedbacks to soil heterotrophic nitrogen fixation in forests. Biogeochemistry 134:41–55.CrossRefGoogle Scholar
  40. Reed SC, Cleveland CC, Townsend AR. 2007. Controls over leaf litter and soil nitrogen fixation in two lowland tropical rain forests. Biotropica 39:585–92.CrossRefGoogle Scholar
  41. Reed SC, Cleveland CC, Townsend AR. 2008. Tree species control rates of free-living nitrogen fixation in a tropical rain forest. Ecology 89:2924–34.CrossRefGoogle Scholar
  42. Reed SC, Cleveland CC, Townsend AR. 2011. Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu Rev Ecol Evol Syst 42:489–512.CrossRefGoogle Scholar
  43. Shi L, Zhang H, Liu T, Zhang W, Shao Y, Ha D, Li Y, Zhang C, Cai XA, Rao X. 2016. Consistent effects of canopy vs. understory nitrogen addition on the soil exchangeable cations and microbial community in two contrasting forests. Sci Total Environ 553:349–57.CrossRefGoogle Scholar
  44. Sullivan BW, Smith WK, Townsend AR, Nasto MK, Reed SC, Chazdon RL, Cleveland CC. 2014. Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle. P Natl Acad Sci USA 111:8101–6.CrossRefGoogle Scholar
  45. Umana NHN, Wanek W. 2010. Large canopy exchange fluxes of inorganic and organic nitrogen and preferential retention of nitrogen by epiphytes in a tropical lowland rainforest. Ecosystems 13:367–81.CrossRefGoogle Scholar
  46. Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB. 2002. Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57:1–45.CrossRefGoogle Scholar
  47. Vitousek PM, Hobbie S. 2000. Heterotrophic nitrogen fixation in decomposing litter: patterns and regulation. Ecology 81:2366–76.CrossRefGoogle Scholar
  48. Vitousek PM, Menge DN, Reed SC, Cleveland CC. 2013. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philos T R Soc B 368:20130119.CrossRefGoogle Scholar
  49. Wang Q, Wang J, Li Y, Chen D, Ao J, Zhou W, Shen D, Li Q, Huang Z, Jiang Y. 2017. Influence of nitrogen and phosphorus additions on N2-fixation activity, abundance, and composition of diazotrophic communities in a Chinese fir plantation. Sci Total Environ .  https://doi.org/10.1016/j.scitotenv.2017.10.064.CrossRefPubMedGoogle Scholar
  50. Zhang W, Shen W, Zhu S, Wan S, Luo Y, Yan J, Wang K, Liu L, Dai H, Li P. 2015. CAN Canopy Addition of Nitrogen Better Illustrate the Effect of Atmospheric Nitrogen Deposition on Forest Ecosystem. Sci Rep 5:11245.CrossRefGoogle Scholar
  51. Zheng M, Chen H, Li D, Zhu X, Zhang W, Fu S, Mo J. 2016. Biological nitrogen fixation and its response to nitrogen input in two mature tropical plantations with and without legume trees. Biol Fert Soils 52:1–10.CrossRefGoogle Scholar
  52. Zheng M, Zhang W, Luo Y, Mori T, Mao Q, Wang S, Huang J, Lu X, Mo J. 2017. Different responses of asymbiotic nitrogen fixation to nitrogen addition between disturbed and rehabilitated subtropical forests. Sci Total Environ 601:1505–12.CrossRefGoogle Scholar
  53. Zheng M, Zhang W, Luo Y, Li D, Wang S, Huang J, Lu X, Mo J. 2018. Stoichiometry controls asymbiotic nitrogen fixation and its response to nitrogen inputs in a nitrogen-saturated forest. Ecology .  https://doi.org/10.1002/ecy.2416.CrossRefPubMedGoogle Scholar
  54. Zhu L, Hu Y, Zhao X, Zeng X, Zhao P, Zhang Z, Ju Y. 2017. The impact of drought on sap flow of co-occurring Liquidambar formosana Hance and Quercus variabilis Blume in a temperate forest, central China. Ecohydrology .  https://doi.org/10.1002/eco.1828.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mianhai Zheng
    • 1
    • 6
  • Wei Zhang
    • 1
    Email author
  • Yiqi Luo
    • 2
  • Shiqiang Wan
    • 3
  • Shenglei Fu
    • 4
  • Senhao Wang
    • 1
    • 6
  • Nan Liu
    • 1
  • Qing Ye
    • 1
  • Junhua Yan
    • 1
  • Bi Zou
    • 1
  • Chengliang Fang
    • 5
  • Yuxi Ju
    • 5
  • Denglong Ha
    • 5
  • Liwei Zhu
    • 1
  • Jiangming Mo
    • 1
    Email author
  1. 1.Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
  2. 2.Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffUSA
  3. 3.School of Life ScienceHenan UniversityKaifengChina
  4. 4.College of Environment and PlanningHenan UniversityKaifengChina
  5. 5.Jigongshan National Natural ReserveXinyangChina
  6. 6.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations