Advertisement

Ecosystems

, Volume 22, Issue 4, pp 781–795 | Cite as

Context-Dependency of Agricultural Legacies in Temperate Forest Soils

  • Haben BlondeelEmail author
  • Michael P. Perring
  • Laurent Bergès
  • Jörg Brunet
  • Guillaume Decocq
  • Leen Depauw
  • Martin Diekmann
  • Dries Landuyt
  • Jaan Liira
  • Sybryn L. Maes
  • Margot Vanhellemont
  • Monika Wulf
  • Kris Verheyen
Article

Abstract

Anthropogenic activities have affected forests for centuries, leading to persistent legacies. Observations of agricultural legacies on forest soil properties have been site specific and contrasting. Sites and regions vary along gradients in intrinsic soil characteristics, phosphorus (P) management and nitrogen (N) deposition which could affect the magnitude of soil property responses to past cultivation. A single investigation along these gradients could reconcile contradictions and elucidate context-dependency in agricultural legacies. We analysed soil from 24 paired post-agricultural (established after approx. 1950) and ancient (in existence before 1850) forests in eight European regions. Post-agricultural forest soil had higher pH, higher P-concentration and lower carbon (C) to N ratio compared to ancient forest. Importantly, gradients of soil characteristics, regional P surplus and N deposition affected the magnitude of these legacies. First, we found that three soil groups, characterising inherent soil fertility, determined extractable base cations, pH and concentrations of total N, organic C and total P. Second, regions with greater current P surplus from agriculture correlated with the highest P legacy in post-agricultural forests. Finally, we found that N deposition lowered pH across forests and increased total N and organic C concentrations in post-agricultural forest. These results suggest that (1) legacies from cultivation consistently determine soil properties in post-agricultural forest and (2) these legacies depend on regional and environmental context, including soil characteristics, regional P surplus and N deposition. Identifying gradients that influence the magnitude of agricultural legacies is key to informing how, where and why forest ecosystems respond to contemporary environmental change.

Keywords

ancient forest land-use history nitrogen deposition phosphorus post-agricultural forest soil carbon 

Notes

Acknowledgements

We thank the European Research Council for funding this research through the PASTFORWARD project [ERC Consolidator Grant 614839, attributed to KV]. We thank the Research Foundation – Flanders (FWO) for supporting DL and for funding the scientific research network FLEUR (http://www.fleur.ugent.be) as this network proved to be a helpful platform for finding study regions. Many colleagues from the Forest & Nature Lab provided valuable input in completion of this work. Robbe De Beelde, Filip Ceunen and Kris Ceunen helped considerably in the soil collection campaign. Luc Willems and Greet de Bruyn performed soil chemical analyses. Stephanie Schelfhout and An De Schrijver provided references for soil chemical analyses and P-related literature. We thank Gerrit Genouw from the Research Institute Nature and Forest (INBO) for arranging soil texture analyses. Multiple persons helped in relocating forest patch locations or reconstructing their history and granting access. Our gratitude goes out to Pieter De Becker, Peter Van de Kerckhove, Kris Vandekerkhove, Marc Esprit, Hilaire Martin, Frédéric Archaux, Emilie Gallet-Moron, Henri de Witasse de Thézy, Thierry Kervin and Mme. Laudelot.

Supplementary material

10021_2018_302_MOESM1_ESM.doc (540 kb)
Supplementary material 1 (DOC 540 kb)

References

  1. Baeten L. 2010. Recruitment and performance of forest understorey plants in post-agricultural forests. PhD Thesis, Ghent University.Google Scholar
  2. Baeten L, Vanhellemont M, Frenne PDE, Hermy M, Verheyen K. 2010. The phosphorus legacy of former agricultural land use can affect the production of germinable seeds. Ecoscience 17:365–71.Google Scholar
  3. Balkovič J, Kollár J, Šimonovič V. 2012. Experience with using Ellenberg’s R indicator values in Slovakia: oligotrophic and mesotrophic submontane broad-leaved forests. Biologia 67:474–82.Google Scholar
  4. Barton K. 2017. MuMIn: multi-model inference. URL: https://CRANR-project.org/package=MuMIn.
  5. Bates D, Mächler M, Bolker B, Walker S. 2014. Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48.Google Scholar
  6. Bizzari LE, Collins CD, Brudvig LA, Damschen EI. 2015. Historical agriculture and contemporary fire frequency alter soil properties in longleaf pine woodlands. For Ecol Manage 349:45–54.Google Scholar
  7. Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W. 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59.Google Scholar
  8. Bobbink R, Tomassen H, Weijters M, van den Berg L, Braun S, Nordin A, Schütz K, Hettelingh JP. 2015. Chapter 4: effects and empirical critical loads of nitrogen for europe. In: Critical loads and dynamic risk assessments. vol 25, pp 297–326.Google Scholar
  9. Bomans E, Fransen K, Mertens J, Michiels P, Vandendriessche H, Vogels N. 2005. Addressing phosphorus related problems in farm practice. Leuven-Heverlee: Soil Service of Belgium. p 32.Google Scholar
  10. Bouwman AF, Beusen AHW, Lassaletta L, van Apeldoorn DF, van Grinsven HJM, Zhang J, van Ittersum MK. 2017. Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Sci Rep 7:1–11.Google Scholar
  11. Brudvig LA, Grman E, Habeck CW, Orrock JL, Ledvina JA. 2013. Strong legacy of agricultural land use on soils and understory plant communities in longleaf pine woodlands. For Ecol Manage 310:944–55.Google Scholar
  12. Brunet J, De Frenne P, Holmström E, Lajos M. 2012. Life-history traits explain rapid colonization of young post-agricultural forests by understory herbs. For Ecol Manage 278:55–62.Google Scholar
  13. Bürgi M, Östlund L, Mladenoff DJ. 2017. Legacy effects of human land use: ecosystems as time-lagged systems. Ecosystems 20:94–103.Google Scholar
  14. Compton JE, Boone RD. 2000. Long-term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology 81:2314–30.Google Scholar
  15. Cools N, Vesterdal L, De Vos B, Vanguelova E, Hansen K. 2014. Tree species is the major factor explaining C:N ratios in European forest soils. For Ecol Manage 311:3–16.Google Scholar
  16. Cramer VA, Hobbs RJ, Standish RJ. 2008. What’s new about old fields? Land abandonment and ecosystem assembly. Trends Ecol Evol 23:104–12.Google Scholar
  17. De Frenne P, Graae BJ, Rodríguez-Sánchez F, Kolb A, Chabrerie O, Decocq G, De Kort H, De Schrijver A, Diekmann M, Eriksson O, Gruwez R, Hermy M, Lenoir J, Plue J, Coomes DA, Verheyen K. 2013. Latitudinal gradients as natural laboratories to infer species’ responses to temperature. J Ecol 101:784–95.Google Scholar
  18. de la Peña E, Baeten L, Steel H, Viaene N, De Sutter N, De Schrijver A, Verheyen K. 2016. Beyond plant—soil feedbacks: mechanisms driving plant community shifts due to land-use legacies in post-agricultural forests. Funct Ecol 30:1073–85.Google Scholar
  19. De Schrijver A, De Frenne P, Ampoorter E, van Nevel L, Demey A, Wuyts K, Verheyen K. 2011. Cumulative nitrogen input drives species loss in terrestrial ecosystems. Glob Ecol Biogeogr 20:803–16.Google Scholar
  20. De Schrijver A, De Frenne P, Staelens J, Verstraeten G, Muys B, Vesterdal L, Wuyts K, van Nevel L, Schelfhout S, De Neve S, Verheyen K. 2012a. Tree species traits cause divergence in soil acidification during four decades of postagricultural forest development. Glob Change Biol 18:1127–40.Google Scholar
  21. De Schrijver A, Vesterdal L, Hansen K, De Frenne P, Augusto L, Achat DL, Staelens J, Baeten L, De Keersmaeker L, De Neve S, Verheyen K. 2012b. Four decades of post-agricultural forest development have caused major redistributions of soil phosphorus fractions. Oecologia 169:221–34.Google Scholar
  22. Dirnböck T, Foldal C, Djukic I, Kobler J, Haas E, Kiese R, Kitzler B. 2017. Historic nitrogen deposition determines future climate change effects on nitrogen retention in temperate forests. Clim Change 144:221–35.Google Scholar
  23. Dirnböck T, Grandin U, Bernhardt-Römermann M, Beudert B, Canullo R, Forsius M, Grabner M, Holmberg M, Kleemola S, Lundin L, Mirtl M, Neumann M, Pompei E, Salemaa M, Starlinger F, Staszewski T, Uzieblo K. 2014. Forest floor vegetation response to nitrogen deposition in Europe. Glob Change Biol 20:429–40.Google Scholar
  24. Dupouey AJL, Dambrine E, Laffite JD, Moares C. 2002. Irreversible impact of past land use on forest soils and biodiversity. Ecology 83:2978–84.Google Scholar
  25. European Union. 2015. Regions in the European Union: nomenclature of territorial units for statistics NUTS 2013/EU-28. Luxembourg: Eurostat.Google Scholar
  26. Falkengren-Grerup U, ten Brink D-J, Brunet J. 2006. Land use effects on soil N, P, C and pH persist over 40–80 years of forest growth on agricultural soils. For Ecol Manage 225:74–81.Google Scholar
  27. Fichtner A, von Oheimb G, Härdtle W, Wilken C, Gutknecht JLM. 2014. Effects of anthropogenic disturbances on soil microbial communities in oak forests persist for more than 100 years. Soil Biol Biochem 70:79–87.Google Scholar
  28. Fisher RF, Binkley D. 2000. Soil chemistry and nutrient uptake—phosphate and sulfate concentrations depend on specific adsorption. In: Ecology and management of forest soils. pp 106–7.Google Scholar
  29. Flinn KM, Vellend M, Marks PL. 2005. Environmental causes and consequences of forest clearance and agricultural abandonment in central New York, USA. J Biogeogr 32:439–52.Google Scholar
  30. Foote RL, Grogan P. 2010. Soil carbon accumulation during temperate forest succession on abandoned low productivity agricultural lands. Ecosystems 13:795–812.Google Scholar
  31. Foster D, Swanson F, Aber J, Burke I, Brokaw N, Tilman D, Knapp A. 2003. The importance of land-use legacies to ecology and conservation. Bioscience 53:77–88.Google Scholar
  32. Fowler ZK, Adams MB, Peterjohn WT. 2015. Will more nitrogen enhance carbon storage in young forest stands in central Appalachia? For Ecol Manage 337:144–52.Google Scholar
  33. Fraterrigo J, Turner M, Pearson SM, Dixon P. 2005. Effects of past land use on spatial heterogeneity of soil nutrients in southern Appalachian forests. Ecol Monogr 75:215–30.Google Scholar
  34. Gérard F. 2016. Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils—a myth revisited. Geoderma 262:213–26.Google Scholar
  35. Gilbert J, Gwonig D, Wallace H. 2009. Available soil phosphorus in semi-natural grasslands: assessment methods and community tolerances. Biol Cons 142:1074–83.Google Scholar
  36. Grossmann EB, Mladenoff DJ. 2008. Farms, fires, and forestry: disturbance legacies in the soils of the Northwest Wisconsin (USA) Sand Plain. For Ecol Manage 256:827–36.Google Scholar
  37. Hirst RA, Pywell RF, Marrs RH, Putwain PD. 2005. The resilience of calcareous and mesotrophic grasslands following disturbance. J Appl Ecol 42:498–506.Google Scholar
  38. Honnay O, Bossuyt B, Verheyen K, Butaye J, Jacquemyn H, Hermy M. 2002. Ecological perspectives for the restoration of plant community in European temperate forests. Biodivers Conserv 11:213–42.Google Scholar
  39. Koerner W, Dupouey JL, Dambrine E, Benoit M. 1997. Influence of past land use on the vegetation and soils of present day forest in the Vosges mountains, France. J Ecol 85:351–8.Google Scholar
  40. Lajtha K, Driscoll CT, Jarrell WM, Elliott ET. 1999. Soil phosphorus: characterization and total element analysis. In: Robertson GP, Bledsoe C, Sollins P, Eds. Standard soil methods for long-term ecological research. New York, NY: Oxford University Press.Google Scholar
  41. Leuschner C, Wulf M, Bäuchler P, Hertel D. 2014. Forest continuity as a key determinant of soil carbon and nutrient storage in beech forests on sandy soils in Northern Germany. Ecosystems 17:497–511.Google Scholar
  42. Lukac M, Godbold DL. 2011. Soil ecology in northern forests: a belowground view of a changing world. Cambridge: Cambridge University Press.Google Scholar
  43. Macdonald GK, Bennett EM, Taranu ZE. 2012. The influence of time, soil characteristics, and land-use history on soil phosphorus legacies: a global meta-analysis. Glob Change Biol 18:1904–17.Google Scholar
  44. McLauchlan K. 2006. The nature and longevity of agricultural impacts on soil carbon and nutrients: a review. Ecosystems 9:1364–82.Google Scholar
  45. Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–42.Google Scholar
  46. Nitsch P, Kaupenjohann M, Wulf M. 2018. Forest continuity, soil depth and tree species are important parameters for SOC stocks in an old forest (Templiner Buchheide, northeast Germany). Geoderma 310:65–76.Google Scholar
  47. Perring MP, De Frenne P, Baeten L, Maes SL, Depauw L, Blondeel H, Carón MM, Verheyen K. 2016. Global environmental change effects on ecosystems: the importance of land-use legacies. Glob Change Biol 22:1361–71.Google Scholar
  48. Perring MP, Hedin LO, Levin SA, McGroddy M, de Mazancourt C. 2008. Increased plant growth from nitrogen addition should conserve phosphorus in terrestrial ecosystems. Proc Natl Acad Sci USA 105:1971–6.Google Scholar
  49. Peterken G. 1996. Natural woodland: ecology and conservation in northern temperate regions. Cambridge: Cambridge University Press.Google Scholar
  50. Pretzsch H, Biber P, Schütze G, Uhl E, Rötzer T. 2014. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat Commun 5:1–10.Google Scholar
  51. R Core Team. 2017. R: a language and environment for statistical computing. URL: https://www.r-project.org/.
  52. Ringeval B, Augusto L, Monod H, van Apeldoorn D, Bouwman L, Yang X, Achat DL, Chini LP, Van Oost K, Guenet B, Wang R, Decharme B, Nesme T, Pellerin S. 2017. Phosphorus in agricultural soils: drivers of its distribution at the global scale. Glob Change Biol 23:3418–32.Google Scholar
  53. Rowe H, Withers PJA, Baas P, Chan NI, Doody D, Holiman J, Jacobs B, Li H, MacDonald GK, McDowell R, Sharpley AN, Shen J, Taheri W, Wallenstein M, Weintraub MN. 2016. Integrating legacy soil phosphorus into sustainable nutrient management strategies for future food, bioenergy and water security. Nutr Cycl Agroecosyst 104:393–412.Google Scholar
  54. Sattari SZ, Bouwman AF, Giller KE, van Ittersum MK. 2012. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc Natl Acad Sci 109:6348–53.Google Scholar
  55. Simkin SM, Allen EB, Bowman WD, Clark CM, Belnap J, Brooks ML, Cade BS, Collins SL, Geiser LH, Gilliam FS, Jovan SE, Pardo LH, Schulz BK, Stevens CJ, Suding KN, Throop HL, Waller DM. 2016. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the USA. Proc Natl Acad Sci USA 113:4086–91.Google Scholar
  56. Simonis AD, Setatou HB. 1996. Assessment of available phosphorus and potassium in soils by the calcium chloride extraction method. Commun Soil Sci Plant Anal 27:685–94.Google Scholar
  57. Tao L, Hunter MD. 2012. Does anthropogenic nitrogen deposition induce phosphorus limitation in herbivorous insects? Glob Change Biol 18:1843–53.Google Scholar
  58. Tardy V, Spor A, Mathieu O, Lévèque J, Terrat S, Plassart P, Regnier T, Bardgett RD, van der Putten WH, Roggero PP, Seddaiu G, Bagella S, Lemanceau P, Ranjard L, Maron PA. 2015. Shifts in microbial diversity through land use intensity as drivers of carbon mineralization in soil. Soil Biol Biochem 90:204–13.Google Scholar
  59. Vellend M, Baeten L, Becker-scarpitta A, Mccune JL, Messier J, Myers-smith IH, Sax DF. 2017. Plant biodiversity change across scales during the anthropocene. Annu Rev Plant Biol 68:563–86.Google Scholar
  60. Verheyen K, Baeten L, De Frenne P, Bernhardt-Römermann M, Brunet J, Cornelis J, Decocq G, Dierschke H, Eriksson O, Hédl R, Heinken T, Hermy M, Hommel P, Kirby K, Naaf T, Peterken G, Petřík P, Pfadenhauer J, Van Calster H, Walther G-R, Wulf M, Verstraeten G. 2012. Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests. J Ecol 100:352–65.Google Scholar
  61. Verheyen K, Bossuyt B, Hermy M. 1999. The land use history (1278–1990) of a mixed hardwood forest in western Belgium and its relationship with chemical soil characteristics. J Biogeogr 26:1115–28.Google Scholar
  62. Verheyen K, De Frenne P, Baeten L, Waller DM, Hédl R, Perring MP, Blondeel H, Brunet J, Chudomelová M, Decocq G, De Lombaerde E, Depauw L, Dirnböck T, Durak T, Eriksson O, Gilliam FS, Heinken T, Heinrichs S, Hermy M, Jaroszewicz B, Jenkins MA, Johnson SE, Kirby KJ, Kopecký M, Landuyt D, Lenoir J, Li D, Macek M, Maes SL, Máliš F, Mitchell FJG, Naaf T, Peterken G, Petřík P, Reczyńska K, Rogers DA, Schei FHø, Schmidt W, Standovár T, Świerkosz K, Ujházy K, Van Calster H, Vellend M, Vild O, Woods K, Wulf M, Bernhardt-Römermann M. 2017. Combining biodiversity resurveys across regions to advance global change research. Bioscience 67:73–83.Google Scholar
  63. Vesterdal L, Schmidt IK, Callesen I, Nilsson LO, Gundersen P. 2008. Carbon and nitrogen in forest floor and mineral soil under six common European tree species. For Ecol Manage 255:35–48.Google Scholar
  64. von Wandruszka R. 2006. Phosphorus retention in calcareous soils and the effect of organic matter on its mobility. Geochem Trans 7:1–8.Google Scholar
  65. Wall A, Hytönen J. 2005. Soil fertility of afforested arable land compared to continuously forested sites. Plant Soil 275:247–60.Google Scholar
  66. Waters CN, Zalasiewicz J, Summerhayes C, Barnosky AD, Poirier C, Gauszka A, Cearreta A, Edgeworth M, Ellis EC, Ellis M, Jeandel C, Leinfelder R, McNeill JR, Richter DD, Steffen W, Syvitski J, Vidas D, Wagreich M, Williams M, Zhisheng A, Grinevald J, Odada E, Oreskes N, Wolfe AP. 2016. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351:aad2622.Google Scholar
  67. Yesilonis I, Szlavecz K, Pouyat R, Whigham D, Xia L. 2016. Historical land use and stand age effects on forest soil properties in the Mid-Atlantic US. For Ecol Manage 370:83–92.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Haben Blondeel
    • 1
    Email author
  • Michael P. Perring
    • 1
    • 2
  • Laurent Bergès
    • 3
  • Jörg Brunet
    • 4
  • Guillaume Decocq
    • 5
  • Leen Depauw
    • 1
  • Martin Diekmann
    • 6
  • Dries Landuyt
    • 1
  • Jaan Liira
    • 7
  • Sybryn L. Maes
    • 1
  • Margot Vanhellemont
    • 1
  • Monika Wulf
    • 8
  • Kris Verheyen
    • 1
  1. 1.Forest & Nature Lab, Department of Environment, Faculty of Bioscience EngineeringGhent UniversityMelle-GontrodeBelgium
  2. 2.Ecosystem Restoration and Intervention Ecology Research Group, School of Biological SciencesThe University of Western AustraliaCrawleyAustralia
  3. 3.Irstea, UR EMGR, UR LESSEMUniversité Grenoble AlpesSt-Martin-d’HèresFrance
  4. 4.Southern Swedish Forest Research CentreSwedish University of Agricultural SciencesAlnarpSweden
  5. 5.Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR 7058 CNRS)Jules Verne University of PicardieAmiens Cedex 1France
  6. 6.Vegetation Ecology and Conservation Biology, Institute of Ecology, FB 2University of BremenBremenGermany
  7. 7.Institute of Ecology and Earth ScienceUniversity of TartuTartuEstonia
  8. 8.ZALF, Research Area 2MünchebergGermany

Personalised recommendations