Advertisement

Ecosystems

, Volume 22, Issue 1, pp 152–164 | Cite as

Spatio-Temporal Structural Equation Modeling in a Hierarchical Bayesian Framework: What Controls Wet Heathland Vegetation?

  • Christian DamgaardEmail author
Article
  • 115 Downloads

Abstract

Structural equation models are highly suited for evaluating ecosystem-level hypotheses, but to be effective, structural equation models need to be able to accommodate spatial and temporal data. Here, the importance of different abiotic and biotic drivers on wet heathland vegetation is investigated using a spatio-temporal structural equation model in a hierarchical Bayesian framework. Ecological data from 39 Danish sites, each with several wet heathland plots, were sampled in the period 2007–2014. Including resampling over the years, 1322 plots were sampled. Plant cover was measured using the pin-point method and the joint distribution of the key plant species in the wet heathland ecosystem, Erica tetralix, Calluna vulgaris, Molinia caerulea, and an aggregate class of other higher plants was estimated assuming a Dirichlet-multinomial mixture distribution. The investigated drivers of wet heathland vegetation include nitrogen deposition, soil type, pH, precipitation and grazing. Generally, the two dwarf shrubs, E. tetralix and C. vulgaris, responded in qualitatively similar ways to the abiotic variables and qualitatively oppositely to the way the grass M. caerulea and the aggregate class of other higher plants. Furthermore, the spatial effects were qualitatively similar to the temporal effects. The two dwarf shrub species were most likely positively affected by nitrogen deposition, soil pH, sandy soils, low precipitation, and the absence of grazing. The study demonstrated that important insight on ecosystem dynamics and regulation can be obtained by spatial and temporal structural equation modeling in a hierarchical Bayesian framework and that the proper statistical modeling of the joint species abundance is a key feature of such models. Furthermore, the advantages of partitioning different types of uncertainties become clear when the fitted structural equation model is used for predictive purposes at a specific site.

Keywords

hierarchical Bayesian models joint distribution of plant abundance pin-point cover data spatial and temporal variation of plant cover structural equation modeling wet heathland vegetation 

Supplementary material

10021_2018_259_MOESM1_ESM.docx (40 kb)
Supplementary material 1 (DOCX 41 kb)
10021_2018_259_MOESM2_ESM.xlsx (62 kb)
Supplementary material 2 (XLSX 63 kb)

References

  1. Aerts R, Berendse F. 1988. The effect of increased nutrient availability on vegetation dynamics in wet heathlands. Vegetatio 76:63–9.Google Scholar
  2. Aerts R, Berendse F, Caluwe HD, Schmitz M. 1990. Competition in heathland along an experimental gradient of nutrient availability. Oikos 57:310–18.CrossRefGoogle Scholar
  3. Bannister P. 1966. Erica tetralix L. J Ecol 54:795–813.CrossRefGoogle Scholar
  4. Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore MR, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, de Vries W. 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59.CrossRefGoogle Scholar
  5. Clark JS. 2007. Models for ecological data. Princeton: Princeton University Press.Google Scholar
  6. Clark JS, Gelfand AE, Woodall CW, Zhu K. 2013. More than the sum of the parts: forest climate response from joint species distribution models. Ecol Appl 24:990–9.CrossRefGoogle Scholar
  7. Damgaard C. 2009. On the distribution of plant abundance data. Ecol Inform 4:76–82.CrossRefGoogle Scholar
  8. Damgaard C. 2012. Trend analyses of hierarchical pin-point cover data. Ecology 93:1269–74.CrossRefGoogle Scholar
  9. Damgaard C. 2013. Hierarchical and spatially aggregated plant cover data. Ecol Inform 18:35–9.CrossRefGoogle Scholar
  10. Damgaard C. 2015. Modelling pin-point cover data of complementary vegetation classes. Ecol Inform 30:179–84.CrossRefGoogle Scholar
  11. Damgaard C, Nielsen KE, Strandberg M. 2017. The effect of nitrogen deposition on the vegetation of wet heathlands. Plant Ecol 218:373–83.CrossRefGoogle Scholar
  12. Damgaard C, Strandberg MT, Kristiansen SM, Nielsen KE, Bak JL. 2014. Is Erica tetralix abundance on wet heathlands controlled by nitrogen deposition or soil acidification? Environ Pollut 184:1–8.CrossRefGoogle Scholar
  13. Damgaard C, Thomsen MP, Borchsenius F, Nielsen KE, Strandberg M. 2013. The effect of grazing on biodiversity in coastal dune heathlands. J Coast Conserv 17:663–70.CrossRefGoogle Scholar
  14. Damgaard C, Weiner J. 2017. It’s about time: a critique of macroecological inferences concerning plant competition. Trends Ecol Evol 32:86–7.CrossRefGoogle Scholar
  15. Degn HJ. 2006. Lyng og græs på Randbøl Hede 2005—de store linier. Randbøl Skovdistrikt: Naturstyrelsen. p 12.Google Scholar
  16. DMI 2014. Average annual precipitation in the period 2001 to 2010 with a spatial resolution of 10 km Danmarks Meteorologiske Institut, Copenhagen.Google Scholar
  17. DMI. 2017. Fremtidens klima i Danmark. København: Danmarks Meteorologiske Institut.Google Scholar
  18. Ellenberg H. 1979. Zeigerwerte der Gefäszpflanzen Mitteleuropas. Scripta Geobotanica 9.Google Scholar
  19. Ellermann T, Andersen HV, Bossi B, Christensen J, Løfstrøm P, Monies C, Grundahl L, Geels C. 2012. Atmosfærisk deposition 2011—NOVANA. Aarhus: Nationalt Center for Miljø og Energi.Google Scholar
  20. EU. 2003. Interpretation manual of European Union habitats. Natura 2000. European Commission. European Commission, DG Environment, Nature and Biodiversity, Bruxelles.Google Scholar
  21. Gimingham C. 1978. Calluna and its associated species: some aspects of co-existence in communities. Plant Ecol 36:179–86.CrossRefGoogle Scholar
  22. Gimingham CH. 1960. Biological Flora of the British Isles. No. 74. Calluna vulgaris (L.) Hull. J Ecol 48:455–83.CrossRefGoogle Scholar
  23. Gimingham CH. 1988. A reappraisal of cyclical processes in Calluna heath. Vegetatio 77:61–4.CrossRefGoogle Scholar
  24. Gimingham CH, Chapman SB, Webb NR. 1979. European heathlands. In: Specht RL, Ed. Ecosystems of the world 9A. Amsterdam: Elsevier. p 365–86.Google Scholar
  25. Gimingham CH, Hobbs RJ, Mallik AU. 1981. Community dynamics in relation to management of heathland vegetation in Scotland. Vegetatio 46:149–55.CrossRefGoogle Scholar
  26. Grace JB, Anderson TM, Olff H, Scheiner SM. 2010. On the specification of structural equation models for ecological systems. Ecol Monogr 80:67–87.CrossRefGoogle Scholar
  27. Granger CWJ. 1969. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424–38.CrossRefGoogle Scholar
  28. Grant SA, Hunter RF, Cross C. 1963. The effects of muirburning Molinia-dominant communities. J Br Grassl Soc 18:249–57.CrossRefGoogle Scholar
  29. Grant SA, Torvell L, Common TG, Sim EM, Small JL. 1996. Controlled grazing studies on Molinia grassland: Effects of different seasonal patterns and levels of defoliation on Molinia growth and responses of swards to controlled grazing by cattle. J Appl Ecol 33:1267–80.CrossRefGoogle Scholar
  30. Greve MH, Greve MB, Bøcher PK, Balstrøm T, Breuning-Madsen H, Krogh L. 2007. Generating a Danish raster-based topsoil property map combining choropleth maps and point information. Dan J Geogr 107:1–12.CrossRefGoogle Scholar
  31. Hampton M. 2008. Management of Natura 2000 habitats: 4010 Northern Atlantic wet heaths with Erica tetralix. European Commission: Bruxelles.Google Scholar
  32. Haran M. 2011. Gaussian random field models for spatial data. In: Brooks SP, Gelman AE, Jones GL, Meng X-L, Eds. Handbook of Markov chain Monte Carlo. Boca Raton: CRC.Google Scholar
  33. Lavorel S, Garnier E. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–56.CrossRefGoogle Scholar
  34. Levy EB, Madden EA. 1933. The point method of pasture analyses. N Z J Agric 46:267–79.Google Scholar
  35. Lindquist B. 1931. Den skandinaviska bokskogens biologi. Svenska Skogsvårdsföeningens Tidskrift 3Google Scholar
  36. Lykke IMØ, Strandberg M, Nielsen KE, Barfod A, Damgaard C. 2015. Strukturelle ligningsmodeller som beslutningsgrundlag indenfor naturvaltningen—Et eksempel fra pleje af klokkelyng på våde heder. Videnskabelig rapport fra DCE—Nationalt Center for Miljø og Energi. DCE, Silkeborg, p. 100.Google Scholar
  37. Nielsen KE, Bak JL, Bruus M, Damgaard C, Ejrnæs R, Fredshavn JR, Nygaard B, Skov F, Strandberg B, Strandberg M. 2012. NATURDATA.DK—Danish monitoring program of vegetation and chemical plant and soil data from non-forested terrestrial habitat types. Biodivers Ecol 4:375.CrossRefGoogle Scholar
  38. Nygaard B, Damgaard C, Nielsen KE, Bladt J, Ejrnæs R. 2016. Habitatdirektivets naturtyper. Aarhus Universitet, DCE—Nationalt Center for Miljø og Energi.Google Scholar
  39. Nygaard B, Ejrnæs R, Baattrup-Pedersen A, Fredshavn J. 2009. Danske plantesamfund i moser og enge—vegetation, økologi, sårbarhed og beskyttelse. Aarhus: Faglig rapport fra DMU.Google Scholar
  40. Ovaskainen O, Roy DB, Fox R, Anderson BJ. 2016. Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models. Methods Ecol Evol 7:428–36.CrossRefGoogle Scholar
  41. Pearl J. 2009. Causality: models reasoning, and inferences. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  42. Pärtel M. 2002. Local plant diversity patterns and evolutionary history at the regional scale. Ecology 83:2361–6.CrossRefGoogle Scholar
  43. Ransijn J, Damgaard C, Schmidt I. 2015. Do competitive interactions in dry heathlands explain plant abundance patterns and species coexistence? Plant Ecol 216:199–211.CrossRefGoogle Scholar
  44. Rutter AJ. 1955. The composition of wet-heath vegetation in relation to the water-table. J Ecol 43:507–43.CrossRefGoogle Scholar
  45. Stace C. 1999. Field flora of the British Isles. Cambridge: Cambridge University Press.Google Scholar
  46. Strandberg M, Damgaard C, Degn HJ, Bak JL, Nielsen KE. 2012. Evidence for acidification-driven ecosystem collapse of Danish wet heathland. Ambio 41:393–401.CrossRefGoogle Scholar
  47. Svenning J-C, Sandel B. 2013. Disequilibrium vegetation dynamics under future climate change. Am J Bot 100:1–21.CrossRefGoogle Scholar
  48. Taylor K, Rowland AP, Jones HE. 2001. Molinia caerulea (L.) Moench. J Ecol 89:126–44.CrossRefGoogle Scholar
  49. Usher MB, Thompson DBA. 1993. Variation in the upland heathlands of Great Britain: conservation importance. Biol Cons 66:69–81.CrossRefGoogle Scholar
  50. Valle D, Baiser B, Woodall CW, Chazdon R. 2014. Decomposing biodiversity data using the Latent Dirichlet Allocation model, a probabilistic multivariate statistical method. Ecol Lett 17:1591–601.CrossRefGoogle Scholar
  51. Watt AS. 1947. Pattern and process in the plant community. J Ecol 35:1–22.CrossRefGoogle Scholar
  52. Williams BL, Anderson HA, Eds. 1999. The role of plant and soil processes in determining the fate of atmospheric nitrogen. Dordrecht: Kluver.Google Scholar
  53. Wolfram S. 2016. Mathematica. Champaign, USA: Wolfram Research Inc.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BioscienceAarhus UniversitySilkeborgDenmark

Personalised recommendations