Review of ependymomas: assessment of consensus in pathological diagnosis and correlations with genetic profiles and outcome

  • Atsushi SasakiEmail author
  • Junko Hirato
  • Takanori Hirose
  • Kohei Fukuoka
  • Yonehiro Kanemura
  • Naohito Hashimoto
  • Yoshinori Kodama
  • Koichi Ichimura
  • Hiroaki Sakamoto
  • Ryo Nishikawa
Original Article


We focused on histological and immunohistochemical characteristics of ependymoma (EPN) with molecular profiles to develop more reproducible criteria of the diagnosis. Three expert neuropathologists reviewed the pathology of 130 samples from the Japan Pediatric Molecular Neuro-Oncology Group study. Confirmed cases were assessed for histology, surrogate markers, molecular subgrouping, and survival data. We reached a consensus regarding the diagnosis of EPNs in 100% of spinal cord tumors and 93% of posterior fossa (PF) tumors that had been diagnosed as EPNs by local pathologists, whereas we reached a consensus regarding only 77% of the local diagnosis of supratentorial (ST) EPNs. Among the PF-EPNs, most of anaplastic ependymomas (AEPNs) were defined as EPN-A by methylation profiling, which was significantly correlated with the subgroup assignment. Regarding prognosis, the overall survival of patients with PF-EPN was significantly better than that of patients with PF AEPN (p = 0.01). Histologically, all ependymoma, RELA fusion-positive (EPN-RELA) qualified as Grade III. Both L1 cell adhesion molecule and nuclear factor kappaB p65 antibodies showed good sensitivity for detecting EPN-RELA. This study indicated that the expert consensus pathological diagnosis could correlate well with the molecular classifications in EPNs. ST EPNs should be diagnosed more carefully by histological and molecular analyses.


Ependymoma Immunohistochemistry RELA Posterior fossa Supratentorial L1CAM NF-kB 



We thank the following individuals for their comments regarding pathological diagnosis: Takashi Komori, Makoto Shibuya, Hiroyoshi Suzuki, and Shinya Tanaka. The authors also thank Tomio Honma and Toshinori Nagai for their excellent technical assistance.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.


  1. 1.
    Ellison DW, McLendon R, Wiestler OD et al (2016) Ependymoma. In: Louis DN, Ohgaki H. Wiestler OD, Cavenee WK (eds) WHO classification of tumours of the central nervous system. Fourth Edition revised. IARC press, Lyon, pp 106–111Google Scholar
  2. 2.
    Healey EA, Barnes PD, Kupsky WJ et al Scott RM, Sallan SE, Black PM, Tarbell NJ (1991) The prognostic significance of postoperative residual tumor in ependymoma. Neurosurgery 28:666–671CrossRefGoogle Scholar
  3. 3.
    Ikezaki K, Matsushima T, Inoue T et al (1993) Correlation of microanatomical localization with postoperative survival in posterior fossa ependymomas. Neurosurgery 32:38–44CrossRefGoogle Scholar
  4. 4.
    Pollack IF, Gerszten PC, Martinez AJ et al (1995) Intracranial ependymomas of childhood: long-term outcome and prognostic factors. Neurosurgery 37:655–666CrossRefGoogle Scholar
  5. 5.
    van Veelen-Vincent ML, Pierre-Kahn A, Kalifa C et al (2002) Ependymoma in childhood: prognostic factors, extent of surgery, and adjuvant therapy. J Neurosurg 97:827–835CrossRefGoogle Scholar
  6. 6.
    Metellus P, Barrie M, Figarella-Branger D et al (2007) Multicentric French study on adult intracranial ependymomas: prognostic factors analysis and therapeutic considerations from a cohort of 152 patients. Brain 130:1338–1349CrossRefGoogle Scholar
  7. 7.
    Ellison DW, Kocak M, Figarella-Branger D et al (2011) Histopathological grading of pediatric ependymoma: reproducibility and clinical relevance in European trial cohorts. J Negative Results Biomed 10:7CrossRefGoogle Scholar
  8. 8.
    Pajtler K, Mack SC, Ramaswamy V et al (2017) The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variant. Acta Neuropathol 133:5–12CrossRefGoogle Scholar
  9. 9.
    Acquaye A, Vera E, Gilbert MR et al (2017) Clinical presentation and outcomes for adult ependymoma patients. Cancer 123:494–501CrossRefGoogle Scholar
  10. 10.
    Parker M, Mohankumar KM, Punchihewa C et al (2014) C11orf95-RELA fusions drive oncogenic NF-κB signallimng in ependymoma. Nature 506:451–455CrossRefGoogle Scholar
  11. 11.
    Pajtler KW, Witt H, Sill M et al (2015) Molecular classification of ependymal tumors across all CNS compartments. Histopathological grades, and age groups. Cancer Cell 27:728–743CrossRefGoogle Scholar
  12. 12.
    Figarella-Branger D, Lachapt-Zalcman E, Tobouret E et al (2016) Supratentorial clear cell ependymomas with branching capillaries demonstrate characteristic clinicopathological features and pathological activation of nuclear factor-kappaB signaling. Neuro-Oncol 18:919–927CrossRefGoogle Scholar
  13. 13.
    Nakamura T, Fukuoka K, Ikeda J et al (2017) Encouraging option of multi-staged gross total resection for a C11orf-RelA fusion-positive supratentorial anaplastic ependymoma. Brain Tumor Pathol 34:160–164CrossRefGoogle Scholar
  14. 14.
    Onishi S, Yamasaki F, Nakano Y et al (2018) RELA fusion-positive anaplastic ependymoma: molecular characterization and advanced MR imaging. Brain Tumor Pathol 35:41–45CrossRefGoogle Scholar
  15. 15.
    Witt H, Mack SC, Ryzhova M et al (2011) Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20:143–157CrossRefGoogle Scholar
  16. 16.
    Sasaki A, Yokoo H, Tanaka Y et al (2013) Characterization of microglia/macrophages in gliomas developed in S-100βv-erbB transgenic rats. Neuropathology 33:505–514Google Scholar
  17. 17.
    Fukuoka K, Kanemura Y, Shofuda T et al (2018) Significance of molecular classification in ependymomas: C11orf95-RELA fusion-negative supratentorial ependymomas are a heterogenous group of tumor. Acta Neuropathol Commun 6(1):134. CrossRefGoogle Scholar
  18. 18.
    Wani K, Armstrong TS, Vera-Bolanos E et al (2012) Collaborative Ependymoma Research Network. A prognostic gene expression signature in infratentorial ependymoma. Acta Neuropathol 123:727–738CrossRefGoogle Scholar
  19. 19.
    Hoffman LM, Donson AM, Nakachi I et al (2014) Molecular sub-group-specific immunophenotypic changes are associated with outcome in recurrent posterior fossa ependymoma. Acta Neuropathol 127:731–745CrossRefGoogle Scholar
  20. 20.
    Tihan T, Zhou T, Holmes E et al (2008) The prognostic value of histological grading of posterior fossa ependymomas in children: a Children’s Oncology Group study and a review of prognostic factors. Mod Pathol 21:165–177CrossRefGoogle Scholar
  21. 21.
    Rezai AR, Woo HH, Lee M et al (1996) Disseminated ependymomas of the central nervous system. J Neurosurg 85:618–624CrossRefGoogle Scholar
  22. 22.
    Prayson RA (1998) Cyclin D1 and MIB-1 immunohistochemistry in ependymomas: a study of 41 cases. Am J Clin Pathol 110:629–634CrossRefGoogle Scholar
  23. 23.
    Figarella-Branger D, Civatte M, Bouvier-Labit C et al (2000) Prognostic factors in intracranial ependymomas in children. J Neurosurg 93:605–613CrossRefGoogle Scholar
  24. 24.
    Wolfsberger S, Fischer I, Hoftberger R et al (2004) Ki-67 immunolabeling index is an accurate predictor of outcome in patients with intracranial ependymoma. Am J Surg Pathol 28:914–920CrossRefGoogle Scholar
  25. 25.
    Kurt E, Zheng PP, Hop WC et al (2006) Identification of relevant prognostic histopathologic features in 69 intracranial ependymomas, excluding myxopapillary ependymomas and subependymomas. Cancer 106:388–395CrossRefGoogle Scholar
  26. 26.
    Araki A, Chocholous M, Gojo J et al (2016) Chromosome 1q gain ad tenascin-C expression are candidate markers to define different risk groups in pediatric posterior fossa ependymoma. Acta Neuropathol Commun 4:88–97CrossRefGoogle Scholar
  27. 27.
    Bayliss J, Mukherjee P, Lu C et al (2016) Lowered H3K27me3 and DNA hypomethylation define poorly prognostic pediatric posterior fossa ependymomas. Sci Transl Med 8:366ra161CrossRefGoogle Scholar
  28. 28.
    Panwalkar P, Clark J, Ramaswamy V et al (2017) Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome. Acta Neuropathol 134:705–714CrossRefGoogle Scholar
  29. 29.
    Tsuzuki T, Izumoto S, Ohnishi T et al (1998) Neural cell adhesion molecule L1 in gliomas: correlation with TGF-β. J Clin Pathol 51:13–17CrossRefGoogle Scholar
  30. 30.
    Suzuki T, Izumoto S, Fujimoto Y et al (2005) Clinicopathological study of cellular proliferation and invasion in gliomatosis cerebri: important role of neural cell adhesion molecule L1 in tumour invasion. J Clin Pathol 58:166–171CrossRefGoogle Scholar
  31. 31.
    Pietsch T, Wohlers I, Goschzik T et al (2014) Supratentorial epoendymomas of childfood carry C11orf95-RELA fusions leading to pathological activation of the NF-κB signalling pathway. Acta Neuropathol 127:609–611CrossRefGoogle Scholar
  32. 32.
    Wang H, Wang H, Zhang W et al (2004) Analysis of the activation status of Akt, NFκB, and Stat3 in human diffuse gliomas. Lab Invest 84:941–951CrossRefGoogle Scholar
  33. 33.
    Min KW, Scheithauer BW (1997) Clear cell ependymoma: a mimic of oligodendroglioma: clinicopathologic and ultrastructural considerations. Am J Surg Pathol 21:820–826CrossRefGoogle Scholar
  34. 34.
    Fouladi M, Helton K, Dalton J et al (2003) Clear cell ependymoma: a clinicopathologic and radiographic analysis of 10 patients. Cancer 98:2232–2244CrossRefGoogle Scholar
  35. 35.
    Tihan T, Burger PC (2016) Ependymoma. In: Kleinschmidt-deMasters BK, Rodriguez FJ, Tihan T (eds) Diagnostic pathology neuropathology, 2 edn. Elsevier, Inc, Salt Lake CityGoogle Scholar
  36. 36.
    Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820CrossRefGoogle Scholar
  37. 37.
    Liu Z, Li J, Liu Z et al (2014) Supratentorial cortical ependymoma: case series and review of the literature. Neuropathology 34:243–252CrossRefGoogle Scholar

Copyright information

© The Japan Society of Brain Tumor Pathology 2019

Authors and Affiliations

  • Atsushi Sasaki
    • 1
    Email author
  • Junko Hirato
    • 2
  • Takanori Hirose
    • 3
  • Kohei Fukuoka
    • 4
    • 9
  • Yonehiro Kanemura
    • 5
    • 9
  • Naohito Hashimoto
    • 1
  • Yoshinori Kodama
    • 6
  • Koichi Ichimura
    • 4
    • 9
  • Hiroaki Sakamoto
    • 7
    • 9
  • Ryo Nishikawa
    • 8
    • 9
  1. 1.Department of PathologySaitama Medical UniversitySaitamaJapan
  2. 2.Department of PathologyGunma University HospitalMaebashiJapan
  3. 3.Department of Pathology for Regional CommunicationKobe UniversityKobeJapan
  4. 4.Division of Brain Tumor Translational ResearchNational Cancer Center Research InstituteTokyoJapan
  5. 5.Department of Neurosurgery and Institute for Clinical ResearchOsaka National HospitalOsakaJapan
  6. 6.Department of Pathology and Applied Neurobiology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
  7. 7.Department of Pediatric NeurosurgeryOsaka City General HospitalOsakaJapan
  8. 8.Department of Neuro-Oncology/NeurosurgerySaitama Medical University International Medical CenterSaitamaJapan
  9. 9.Japan Pediatric Molecular Neuro-Oncology Group (JPMNG)TokyoJapan

Personalised recommendations