Advertisement

Brain Tumor Pathology

, Volume 35, Issue 4, pp 193–201 | Cite as

Stromal cells of hemangioblastomas exhibit mesenchymal stem cell-derived vascular progenitor cell properties

  • Shigeki Takada
  • Masato Hojo
  • Noriyoshi Takebe
  • Kenji Tanigaki
  • Susumu Miyamoto
Original Article
  • 69 Downloads

Abstract

Hemangioblastoma is composed of neoplastic stromal cells and a prominent capillary network. To date, the identity of stromal cells remains unclear. Mesenchymal stem cells can give rise to committed vascular progenitor cells, and ephrin-B2/EphB4 and Notch signaling have crucial roles in these steps. The aim of our study was to elucidate that stromal cells of central nervous system hemangioblastomas have mesenchymal stem cell-derived vascular progenitor cell properties. Ten hemangioblastomas were investigated immunohistochemically. CD44, a mesenchymal stem cell marker, was detected in stromal cells of all cases, suggesting that stromal cells have mesenchymal stem cell-like properties. Neither CD31 nor α-SMA was expressed in stromal cells, suggesting that stromal cells have not acquired differentiated vascular cell properties. Both ephrin-B2 and EphB4, immature vascular cell markers, were detected in stromal cells of all cases. Jagged1, Notch1, and Hesr2/Hey2, which are known to be detected in both immature endothelial cells and mural cells, were expressed in stromal cells of all cases. Notch3, which is known to be detected in differentiating mural cells, was also expressed in all cases. These results suggest that stromal cells also have vascular progenitor cell properties. In conclusion, stromal cells of hemangioblastomas exhibit mesenchymal stem cell-derived vascular progenitor cell properties.

Keywords

Ephrin-B2/EphB4 signaling Hemangioblastoma Mesenchymal stem cell Notch signaling Stromal cell 

Notes

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (16689024 to Masato Hojo). We thank Ryota Ito, Mafumi Kurozumi and Toshiaki Manabe for technical assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Rachinger J, Buslei R, Prell J et al (2009) Solid haemangioblastomas of the CNS: a review of 17 consecutive cases. Neurosurg Rev 32:37–47 (discussion 47–48) CrossRefPubMedGoogle Scholar
  2. 2.
    Merrill MJ, Edwards NA, Lonser RR (2011) Notch receptor and effector expression in von Hippel-Lindau disease-associated central nervous system hemangioblastomas. J Neurosurg 115:512–517CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hussein MR (2007) Central nervous system capillary haemangioblastoma: the pathologist’s viewpoint. Int J Exp Pathol 88:311–324CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bamps S, Calenbergh FV, Vleeschouwer SD et al (2013) What the neurosurgeon should know about hemangioblastoma, both sporadic and in Von Hippel-Lindau disease: a literature review. Surg Neurol Int 4:145CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hojo M, Arakawa Y, Funaki T et al (2014) Usefulness of tumor blood flow imaging by intraoperative indocyanine green videoangiography in hemangioblastoma surgery. World Neurosurg 82:e495–e501CrossRefPubMedGoogle Scholar
  6. 6.
    Spence AM, Rubinstein LJ (1975) Cerebellar capillary hemangioblastoma: its histogenesis studied by organ culture and electron microscopy. Cancer 35:326–341CrossRefPubMedGoogle Scholar
  7. 7.
    Ding XH, Zhou LF, Tan YZ et al (2007) Histologic and histogenetic investigations of intracranial hemangioblastomas. Surg Neurol 67:239–245 (discussion 245) CrossRefPubMedGoogle Scholar
  8. 8.
    Lach B, Gregor A, Rippstein P et al (1999) Angiogenic histogenesis of stromal cells in hemangioblastoma: ultrastructural and immunohistochemical study. Ultrastruct Pathol 23:299–310CrossRefPubMedGoogle Scholar
  9. 9.
    Ishizawa K, Komori T, Hirose T (2005) Stromal cells in hemangioblastoma: neuroectodermal differentiation and morphological similarities to ependymoma. Pathol Int 55:377–385CrossRefPubMedGoogle Scholar
  10. 10.
    Ma D, Zhang M, Chen L et al (2011) Hemangioblastomas might derive from neoplastic transformation of neural stem cells/progenitors in the specific niche. Carcinogenesis 32:102–109CrossRefPubMedGoogle Scholar
  11. 11.
    Ma D, Zhu W, Zhang M et al (2011) Identification of tumorigenic cells and implication of their aberrant differentiation in human hemangioblastomas. Cancer Biol Ther 12:727–736CrossRefPubMedGoogle Scholar
  12. 12.
    Park DM, Zhuang Z, Chen L et al (2007) von Hippel-Lindau disease-associated hemangioblastomas are derived from embryologic multipotent cells. PLoS Med 4:e60CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Epari S, Bhatkar R, Moyaidi A et al (2014) Histomorphological spectrum and immunohistochemical characterization of hemangioblastomas: an entity of unclear histogenesis. Indian J Pathol Microbiol 57:542–548CrossRefPubMedGoogle Scholar
  14. 14.
    Shively SB, Beltaifa S, Gehrs B et al (2008) Protracted haemangioblastic proliferation and differentiation in von Hippel-Lindau disease. J Pathol 216:514–520CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Stein AA, Schilp AO, Whitfield RD (1960) The histogenesis of hemangioblastoma of the brain. A review of twenty-one cases. J Neurosurg 17:751–761CrossRefPubMedGoogle Scholar
  16. 16.
    Welten CM, Keats EC, Ang LC et al (2012) Hemangioblastoma stromal cells show committed stem cell phenotype. Can J Neurol Sci 39:821–827CrossRefPubMedGoogle Scholar
  17. 17.
    Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147CrossRefPubMedGoogle Scholar
  18. 18.
    Reyes M, Dudek A, Jahagirdar B et al (2002) Origin of endothelial progenitors in human postnatal bone marrow. J Clin Investig 109:337–346CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang G, Zhou J, Fan Q et al (2008) Arterial-venous endothelial cell fate is related to vascular endothelial growth factor and Notch status during human bone mesenchymal stem cell differentiation. FEBS Lett 582:2957–2964CrossRefPubMedGoogle Scholar
  20. 20.
    Liu Y, Deng B, Zhao Y et al (2013) Differentiated markers in undifferentiated cells: expression of smooth muscle contractile proteins in multipotent bone marrow mesenchymal stem cells. Dev Growth Differ 55:591–605CrossRefPubMedGoogle Scholar
  21. 21.
    Lin CH, Lilly B (2014) Endothelial cells direct mesenchymal stem cells toward a smooth muscle cell fate. Stem Cells Dev 23:2581–2590CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Duffy GP, D’Arcy S, Ahsan T et al (2010) Mesenchymal stem cells overexpressing ephrin-b2 rapidly adopt an early endothelial phenotype with simultaneous reduction of osteogenic potential. Tissue Eng Part A 16:2755–2768CrossRefPubMedGoogle Scholar
  23. 23.
    Kurpinski K, Lam H, Chu J et al (2010) Transforming growth factor-beta and notch signaling mediate stem cell differentiation into smooth muscle cells. Stem Cells 28:734–742CrossRefPubMedGoogle Scholar
  24. 24.
    Foo SS, Turner CJ, Adams S et al (2006) Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 124:161–173CrossRefPubMedGoogle Scholar
  25. 25.
    Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93:741–753CrossRefPubMedGoogle Scholar
  26. 26.
    Adams RH, Wilkinson GA, Weiss C et al (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13:295–306CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hashimoto T, Tsuneki M, Foster TR et al (2016) Membrane-mediated regulation of vascular identity. Birth Defects Res C Embryo Today 108:65–84CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Fischer A, Schumacher N, Maier M et al (2004) The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev 18:901–911CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Fischer A, Gessler M (2003) Hey genes in cardiovascular development. Trends Cardiovasc Med 13:221–226CrossRefPubMedGoogle Scholar
  30. 30.
    Kageyama R, Ohtsuka T, Shimojo H et al (2008) Dynamic Notch signaling in neural progenitor cells and a revised view of lateral inhibition. Nat Neurosci 11:1247–1251CrossRefPubMedGoogle Scholar
  31. 31.
    Lawson ND, Scheer N, Pham VN et al (2001) Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128:3675–3683PubMedGoogle Scholar
  32. 32.
    Hofmann JJ, Iruela-Arispe ML (2007) Notch signaling in blood vessels: who is talking to whom about what? Circ Res 100:1556–1568CrossRefPubMedGoogle Scholar
  33. 33.
    Villa N, Walker L, Lindsell CE et al (2001) Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels. Mech Dev 108:161–164CrossRefPubMedGoogle Scholar
  34. 34.
    Roca C, Adams RH (2007) Regulation of vascular morphogenesis by Notch signaling. Genes Dev 21:2511–2524CrossRefPubMedGoogle Scholar
  35. 35.
    Swift MR, Weinstein BM (2009) Arterial-venous specification during development. Circ Res 104:576–588CrossRefPubMedGoogle Scholar
  36. 36.
    Lonser RR, Glenn GM, Walther M et al (2003) von Hippel-Lindau disease. The Lancet 361:2059–2067CrossRefGoogle Scholar
  37. 37.
    Takada S, Hojo M, Tanigaki K et al (2017) Contribution of endothelial-to-mesenchymal transition to the pathogenesis of human cerebral and orbital cavernous malformations. Neurosurgery 81:176–183CrossRefPubMedGoogle Scholar
  38. 38.
    Takada S, Hojo M, Takebe N et al (2018) Role of endothelial-to-mesenchymal transition in the pathogenesis of central nervous system hemangioblastomas. World Neurosurg.  https://doi.org/10.1016/j.wneu.2018.05.235 (in press) CrossRefPubMedGoogle Scholar
  39. 39.
    Aruffo A, Stamenkovic I, Melnick M et al (1990) CD44 is the principal cell surface receptor for hyaluronate. Cell 61:1303–1313CrossRefPubMedGoogle Scholar
  40. 40.
    Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4:33–45CrossRefPubMedGoogle Scholar
  41. 41.
    Oswald J, Boxberger S, Jrgensen B et al (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22:377–384CrossRefPubMedGoogle Scholar
  42. 42.
    Boxall SA, Jones E (2012) Markers for characterization of bone marrow multipotential stromal cells. Stem Cells Int 2012:975871CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Böhling T, Mäenpää A, Timonen T et al (1996) Different expression of adhesion molecules on stromal cells and endothelial cells of capillary hemangioblastoma. Acta Neuropathol 92:461–466CrossRefPubMedGoogle Scholar
  44. 44.
    Bai J, Wang YJ, Liu L et al (2014) Ephrin B2 and EphB4 selectively mark arterial and venous vessels in cerebral arteriovenous malformation. J Int Med Res 42:405–415CrossRefPubMedGoogle Scholar
  45. 45.
    Erber R, Eichelsbacher U, Powajbo V et al (2006) EphB4 controls blood vascular morphogenesis during postnatal angiogenesis. EMBO J 25:628–641CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hill-Felberg S, Wu HH, Toms SA et al (2015) Notch receptor expression in human brain arteriovenous malformations. J Cell Mol Med 19:1986–1993CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Boucher J, Gridley T, Liaw L (2012) Molecular pathways of notch signaling in vascular smooth muscle cells. Front Physiol 3:81CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Li S, Wang R, Wang Y et al (2014) Receptors of the Notch signaling pathway are associated with hemorrhage of brain arteriovenous malformations. Mol Med Rep 9:2233–2238CrossRefPubMedGoogle Scholar
  49. 49.
    Yamashita J, Itoh H, Hirashima M et al (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408:92–96CrossRefPubMedGoogle Scholar
  50. 50.
    Boscolo E, Stewart CL, Greenberger S et al (2011) JAGGED1 signaling regulates hemangioma stem cell-to-pericyte/vascular smooth muscle cell differentiation. Arterioscler Thromb Vasc Biol 31:2181–2192CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Alles JU, Bosslet K, Schachenmayr W (1986) Hemangioblastoma of the cerebellum—an immunocytochemical study. Clin Neuropathol 5:238–241PubMedGoogle Scholar
  52. 52.
    Jurco SR, Nadji M, Harvey DG et al (1982) Hemangioblastomas: histogenesis of the stromal cell studied by immunocytochemistry. Hum Pathol 13:13–18CrossRefPubMedGoogle Scholar
  53. 53.
    Mizuno J, Iwata K, Takei Y (1993) Immunohistochemical study of hemangioblastoma with special reference to its cytogenesis. Neurol Med Chir (Tokyo) 33:420–424CrossRefGoogle Scholar
  54. 54.
    Bleistein M, Geiger K, Franz K et al (2000) Transthyretin and transferrin in hemangioblastoma stromal cells. Pathol Res Pract 196:675–681CrossRefPubMedGoogle Scholar
  55. 55.
    Becker I, Paulus W, Roggendorf W (1989) Histogenesis of stromal cells in cerebellar hemangioblastomas. An immunohistochemical study. Am J Pathol 134:271–275PubMedPubMedCentralGoogle Scholar
  56. 56.
    Nemes Z (1992) Fibrohistiocytic differentiation in capillary hemangioblastoma. Hum Pathol 23:805–810CrossRefPubMedGoogle Scholar
  57. 57.
    Adams SA, Hilton DA (2002) Recurrent haemangioblastoma with glial differentiation. Neuropathol Appl Neurobiol 28:142–146CrossRefPubMedGoogle Scholar
  58. 58.
    Tanimura A, Nakamura Y, Hachisuka H et al (1984) Hemangioblastoma of the central nervous system: nature of the stromal cells as studied by the immunoperoxidase technique. Hum Pathol 15:866–869CrossRefPubMedGoogle Scholar
  59. 59.
    Gläsker S, Li J, Xia JB et al (2006) Hemangioblastomas share protein expression with embryonal hemangioblast progenitor cell. Cancer Res 66:4167–4172CrossRefPubMedGoogle Scholar
  60. 60.
    Shively SB, Falke EA, Li J et al (2011) Developmentally arrested structures preceding cerebellar tumors in von Hippel-Lindau disease. Mod Pathol 24:1023–1030CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Vortmeyer AO, Frank S, Jeong SY et al (2003) Developmental arrest of angioblastic lineage initiates tumorigenesis in von Hippel-Lindau disease. Cancer Res 63:7051–7055PubMedGoogle Scholar
  62. 62.
    Venkatesh V, Nataraj R, Thangaraj GS et al (2018) Targeting Notch signalling pathway of cancer stem cells. Stem Cell Investig 5:5CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Japan Society of Brain Tumor Pathology 2018

Authors and Affiliations

  1. 1.Department of NeurosurgeryKyoto University Graduate School of MedicineKyotoJapan
  2. 2.Research InstituteShiga Medical CenterMoriyamaJapan
  3. 3.Department of NeurosurgeryShiga Medical Center for AdultsMoriyamaJapan

Personalised recommendations