Skip to main content

Advertisement

Log in

Metabolic assessment of monofocal acute inflammatory demyelination using MR spectroscopy and 11C-methionine-, 11C-choline-, and 18F-fluorodeoxyglucose-PET

  • Original Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

Monofocal acute inflammatory demyelination (MAID), which is observable by CT and MRI as a well-enhanced mass lesion with prominent perifocal edema, is very similar to malignant gliomas radiologically, making differential diagnosis of the two pathologies difficult. The aim of this study was to assess the different metabolic activities between MAID and malignant gliomas by MRS, methionine-PET, choline-PET, and FDG-PET. Six patients with MAID underwent methionine, choline, and FDG-PET, and 4 of the patients also underwent magnetic resonance spectroscopy (MRS). The images obtained from these patients were compared with the corresponding images of 19 anaplastic astrocytomas (AA) and 21 glioblastomas (GBM). The mean choline/creatine ratio of MAID was significantly lower than that of GBM. There were no significant differences in the mean NAA/creatine and lactate/creatine ratios among these pathologies. The methionine T/N ratio of MAID was significantly lower than those of AA and GBM. The choline T/N ratio of MAID was significantly lower than that of GBM. There were no significant differences in the FDG T/N ratios among these pathologies. These results demonstrate that the metabolic activity of MAID significantly differs in part from that of malignant gliomas. Combined PET and MRS neuroimaging examinations may be useful for differential diagnosis of these pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gutrecht JA, Berger JR, RH Jones Jr, Mancall AC (2002) Monofocal acute inflammatory demyelination (MAID): a unique disorder simulating brain neoplasm. South Med J 95:1180–1186

    PubMed  Google Scholar 

  2. Tan HM, Chan LL, Chuah KL, Goh NS, Tang KK (2004) Monophasic, solitary tumefactive demyelinating lesion: neuroimaging features and neuropathological diagnosis. Br J Radiol 77:153–156

    Article  PubMed  CAS  Google Scholar 

  3. Masdeu JC, Quinto C, Olivera C, Tenner M, Leslie D, Visintainer P (2000) Open-ring imaging sign: highly specific for atypical brain demyelination. Neurology 54:1427–1433

    PubMed  CAS  Google Scholar 

  4. Bitsch A, Bruhn H, Vougioukas V, Stringaris A, Lassmann H, Frahm J, Bruck W (1999) Inflammatory CNS demyelination: histopathologic correlation with in vivo quantitative proton MR spectroscopy. AJNR Am J Neuroradiol 20:1619–1627

    PubMed  CAS  Google Scholar 

  5. Saindane AM, Cha S, Law M, Xue X, Zagzag EAKD (2002) Proton MR spectroscopy of tumefactive demyelinating lesions. AJNR Am J Neuroradiol 23:1378–1386

    PubMed  Google Scholar 

  6. Webb PG, Sailasuta N, Kohler SJ, Raidy T, Moats RA, Hurd RE (1994) Automated single-voxel proton MRS: technical development and multisite verification. Magn Reson Med 31:365–373

    Article  PubMed  CAS  Google Scholar 

  7. Kapouleas I, Alavi A, Alves WM, Gur RE, Weiss DW (1991) Registration of three-dimensional MR and PET images of the human brain without markers. Radiology 181:731–739

    PubMed  CAS  Google Scholar 

  8. Heyman D, Delhaye M, Fournier D, Mercier P, Rousselet MC, Menei P (2001) Pseudotumoral demyelination: a diagnosis pitfall (report of three cases). J Neuro-Oncol 54:71–76

    Article  CAS  Google Scholar 

  9. Akimoto J, Nakajima N, Saida A, Haraoka J, Kudo M (2006) Monofocal acute inflammatory demyelination manifesting as open ring sign. Case report. Neurol Med Chir (Tokyo) 46:353–357

    Article  Google Scholar 

  10. Davie CA, Hawkins CP, Barker GJ, Brennan A, Tofts PS, Miller DH, McDonald WI (1994) Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain 117:49–58

    Article  PubMed  Google Scholar 

  11. Silva HC, Callegaro D, Marchiori PE, Scaff M, Tsanaclis AM (1999) Magnetic resonance imaging in five patients with a tumefactive demyelinating lesion in the central nervous system. Arq Neuropsiquiatr 57:921–926

    Article  PubMed  CAS  Google Scholar 

  12. Tovi M, Hartman M, Lilja A, Ericsson A (1994) MR imaging in cerebral gliomas. Tissue component analysis in correlation with histopathology of whole-brain specimens. Acta Radiol 35:495–505

    PubMed  CAS  Google Scholar 

  13. Brenner RE, Munro PM, Williams SC, Bell JD, Barker GJ, Hawkins CP, Landon DN, McDonald WI (1993) The proton NMR spectrum in acute EAE: the significance of the change in the Cho:Cr ratio. Magn Reson Med 29:737–745

    Article  PubMed  CAS  Google Scholar 

  14. Nesbit GM, Forbes GS, Scheithauer BW, Okazaki H, Rodriguez M (1991) Multiple sclerosis: histopathologic and MR and/or CT correlation in 37 cases at biopsy and three cases at autopsy. Radiology 180:467–474

    PubMed  CAS  Google Scholar 

  15. Padma MV, Adineh M, Pugar K, Mukherjee J, Satter M, Shi B, Dunigan K, Bidwell K, Ezzeddine B, Mantil J (2005) Functional imaging of a large demyelinating lesion. J Clin Neurosci 12:176–178

    Article  PubMed  CAS  Google Scholar 

  16. Schiepers C, Van Hecke P, Vandenberghe R, Van Oostende S, Dupont P, Demaerel P, Bormans G, Carton H (1997) Positron emission tomography, magnetic resonance imaging and proton NMR spectroscopy of white matter in multiple sclerosis. Mult Scler 3:8–17

    Article  PubMed  CAS  Google Scholar 

  17. Bakshi R, Miletich RS, Kinkel PR, Emmet ML, Kinkel WR (1998) High-resolution fluorodeoxyglucose positron emission tomography shows both global and regional cerebral hypometabolism in multiple sclerosis. J Neuroimaging 8:228–234

    Article  PubMed  CAS  Google Scholar 

  18. Miwa K, Shinoda J, Yano H, Okumura A, Iwama T, Nakashima T, Sakai N (2004) Discrepancy between lesion distributions on methionine PET and MR images in patients with glioblastoma multiforme: insight from a PET and MR fusion image study. J Neurol Neurosurg Psychiatry 75:1457–1462

    Article  PubMed  CAS  Google Scholar 

  19. Kato T, Shinoda J, Nakayama N, Miwa K, Okumura A, Yano H, Yoshimura S, Maruyama T, Muragaki Y, Iwama T (2008) Metabolic assessment of gliomas using 11C-methionine, [18F]fluorodeoxyglucose, and 11C-choline positron-emission tomography. AJNR Am J Neuroradiol 29:1176–1182

    Article  PubMed  CAS  Google Scholar 

  20. Dethy S, Goldman S, Blecic S, Luxen A, Levivier M, Hildebrand J (1994) Carbon-11-methionine and fluorine-18-FDG PET study in brain hematoma. J Nucl Med 35:1162–1166

    PubMed  CAS  Google Scholar 

  21. Dethy S, Manto M, Kentos A, Konopnicki D, Pirotte B, Goldman S, Hildebrand J (1995) PET findings in a brain abscess associated with a silent atrial septal defect. Clin Neurol Neurosurg 97:349–353

    Article  PubMed  CAS  Google Scholar 

  22. Jacobs A (1995) Amino acid uptake in ischemically compromised brain tissue. Stroke 26:1859–1866

    Article  PubMed  CAS  Google Scholar 

  23. Singhal T, Narayanan TK, Jain V, Mukherjee J, Mantil J (2008) 11C-l-Methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imaging Biol 10:1–18

    Article  PubMed  Google Scholar 

  24. Huang Z, Zuo C, Guan Y, Zhang Z, Liu P, Xue F, Lin X (2008) Misdiagnoses of 11C-choline combined with 18F-FDG PET imaging in brain tumours. Nucl Med Commun 29:354–358

    Article  PubMed  CAS  Google Scholar 

  25. Hara T (2002) 11C-Choline and 2-deoxy-2-[18F]fluoro-d-glucose in tumor imaging with positron emission tomography. Mol Imaging Biol 4:267–273

    Article  PubMed  Google Scholar 

  26. Utriainen M, Komu M, Vuorinen V, Lehikoinen P, Sonninen P, Kurki T, Utriainen T, Roivainen A, Kalimo H, Minn H (2003) Evaluation of brain tumor metabolism with [11C]choline PET and 1H-MRS. J Neuro-Oncol 62:329–338

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. S. Fukuyama, Mr. Y. Kasuya, Mr. R. Okumura, Miss C. Yasutomi, and Mr. S. Yokoyama (Kizawa Memorial Hospital, Minokamo City, Gifu, Japan) for technical support. We thank Mr. A. Mori for PET tracer production (methyl iodide synthesis and methionine module; Sumitomo Heavy Industries, Ltd, Tokyo, Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunsuke Takenaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takenaka, S., Shinoda, J., Asano, Y. et al. Metabolic assessment of monofocal acute inflammatory demyelination using MR spectroscopy and 11C-methionine-, 11C-choline-, and 18F-fluorodeoxyglucose-PET. Brain Tumor Pathol 28, 229–238 (2011). https://doi.org/10.1007/s10014-011-0027-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-011-0027-3

Keywords

Navigation