Advertisement

An Ampleness Criterion for Rank 2 Vector Bundles on Surfaces

  • Arnaud BeauvilleEmail author
Original Article
  • 3 Downloads

Abstract

We give an ampleness criterion for globally generated rank 2 vector bundles on certain surfaces. This applies to the Lazarsfeld–Mukai bundles, to congruences of lines in \(\mathbb {P}^{3}\), and possibly to the construction of surfaces with ample cotangent bundle.

Keywords

Ample vector bundles Lazarsfeld–Mukai bundles Congruences of lines Ample cotangent bundle 

Mathematics Subject Classification (2010)

Primary 14J60 Secondary 14J29 14M15 

Notes

References

  1. 1.
    Bogomolov, F.A.: Holomorphic tensors and vector bundles on projective varieties. Math. USSR-Izvestiya 13, 499–555 (1979)CrossRefGoogle Scholar
  2. 2.
    Buium, A.: Sur le nombre de Picard des revêtements doubles des surfaces algébriques. C. R. Acad. Sci. Paris Sér. I Math. 296, 361–364 (1983)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Deligne, P.: Le théorème de Noether. In: Deligne, P., Katz, N., Katz, N.M. (eds.) Groupes De Monodromie En Géométrie Algébrique II, Exposé XIX. Lecture Notes in Mathematics, vol. 340, pp 328–340. Springer, Berlin (1973)Google Scholar
  4. 4.
    Lazarsfeld, R.K.: Positivity in Algebraic Geometry II. Ergebnisse Der Mathematik und ihrer Grenzgebiete. 3 Folge, vol. 49. Springer, Berlin (2004)Google Scholar
  5. 5.
    Ramanan, S.: Ample divisors on abelian surfaces. Proc. Lond. Math. Soc. (3) 51, 231–245 (1985)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Raynaud, M.: Fibrés vectoriels instables-applications aux surfaces (d’après Bogomolov). In: Giraud, J., Illusie, L., Raynaud, M (eds.) Surfaces Algébriques. Lecture Notes in Mathematics, vol. 868, pp 293–314. Springer, Berlin (1981)CrossRefGoogle Scholar

Copyright information

© Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.CNRS–Laboratoire J.-A. DieudonnéUniversité Côte d’AzurParc ValroseFrance

Personalised recommendations