Subdifferential Stability and Subdifferential Sum Rules

  • Marc LassondeEmail author


In the first part, we discuss the stability of the strong slope and of the subdifferential of a lower semicontinuous function with respect to Wijsman perturbations of the function, i.e., perturbations described via Wijsman convergence. In the second part, we show how subdifferential sum rules can be viewed as special cases of subdifferential stability results.


Lower semicontinuity Wijsman convergence Slope Subdifferential calculus Trustworthiness 

Mathematics Subject Classification (2010)

49J52 49J53 49J45 26E15 



The author gratefully acknowledges the anonymous referees for their relevant comments which allowed an improvement of the presentation of the paper.


  1. 1.
    Aussel, D., Corvellec, J.-N., Lassonde, M.: Nonsmooth constrained optimization and multidirectional mean value inequalities. SIAM J. Optim. 9, 690–706 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Beer, G.: Topologies on Closed and Closed Convex Sets. Mathematics and Its Applications, vol. 268. Kluwer Academic Publishers, Dordrecht (1993)CrossRefzbMATHGoogle Scholar
  3. 3.
    Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. CMS Books in Mathematics. Springer, New York (2005)Google Scholar
  4. 4.
    Clarke, F.H., Ledyaev, Y.S.: Mean value inequalities in Hilbert space. Trans. Am. Math. Soc. 344, 307–324 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    De Giorgi, E., Marino, A., Tosques, M.: Problemi di evoluzione in spazi metrici e curve di massima pendenza. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 68, 180–187 (1980)zbMATHGoogle Scholar
  6. 6.
    Dolecki, S., Greco, G.H.: Towards historical roots of necessary conditions of optimality: Regula of Peano. Control Cybern. 36, 491–518 (2007)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Geoffroy, M., Lassonde, M.: On a convergence of lower semicontinuous functions linked with the graph convergence of their subdifferentials. In: Théra, M (ed.) Constructive, Experimental, and Nonlinear Analysis. CMS Conference Proceedings, vol. 27, pp 93–109. American Mathematical Society, Providence (2000)Google Scholar
  8. 8.
    Geoffroy, M., Lassonde, M.: Stability of slopes and subdifferentials. Set-Valued Anal. 11, 257–271 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ioffe, A.D.: Fuzzy principles and characterization of trustworthiness. Set-Valued Anal. 6, 265–276 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ioffe, A.D.: On the theory of subdifferentials. Adv. Nonlinear Anal. 1, 47–120 (2012)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Ioffe, A.D.: Variational Analysis of Regular Mappings: Theory and Applications. Springer Monographs in Mathematics. Springer, Cham (2017)CrossRefGoogle Scholar
  12. 12.
    Jules, F.: Sur la somme de sous-différentiels de fonctions semi-continues inférieurement. Diss. Math. (Rozprawy Mat.) 423, 1–62 (2003)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Lassonde, M.: First-order rules for nonsmooth constrained optimization. Nonlinear Anal. TMA 44, 1031–1056 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lassonde, M.: Stability of slopes and subdifferentials with respect to Wijsman convergence. In: Proceedings of the 41st IEEE Conference on Decision and Control (Las Vegas, 2002), vol. 3, pp 3133–3134. IEEE (2002)Google Scholar
  15. 15.
    Mordukhovich, B.S., Wang, B.: Necessary suboptimality and optimality conditions via variational principles. SIAM J. Control Optim. 41, 623–640 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Penot, J.-P.: Calculus without Derivatives. Graduate Texts in Mathematics, vol. 266. Springer, New York (2013)CrossRefGoogle Scholar
  17. 17.
    Wijsman, R.A.: Convergence of sequences of convex sets, cones and functions. II. Trans. Am. Math. Soc. 123, 32–45 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Zhu, Q.J.: Subderivatives and their applications. In: Chen, W., Hu, S (eds.) Proceedings of International Conference on Dynamical Systems and Differential Equations (Sringfield, MO, 1996), pp 379–394. Southwest Missouri State University, Springfield (1998)Google Scholar
  19. 19.
    Zhu, Q.J.: The equivalence of several basic theorems for subdifferentials. Set-Valued Anal. 6, 171–185 (1998)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.LIMOSClermont-FerrandFrance

Personalised recommendations