Advertisement

Convexity and Closure in Optimal Allocations Determined by Decomposable Measures

  • Zvi ArtsteinEmail author
Article
  • 18 Downloads

Abstract

A general optimal allocation problem is considered, where the decision-maker controls the distribution of acting agents, by choosing a probability measure on the space of agents. The notion of a decomposable family of probability measures is introduced, in the spirit of a decomposable family of functions. It provides a sufficient condition for the convexity of the feasible set, and the concavity of the value function. Together with additional conditions, closure properties also follow. The notion of a decomposable family of measures covers, both the case of set-valued integrals and the case of convexity in the space of probability measures.

Keywords

Optimal allocations Decomposable family of measures Convexity of feasible set 

Mathematics Subject Classification (2010)

Primary 91B32 Secondary 28B20 

Notes

References

  1. 1.
    Antosiewicz, H.A., Cellina, A.: Continuous selections and differential relations. J. Differ. Equ. 19, 386–398 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Artstein, Z.: On a variational problem. J. Math. Anal. Appl. 45, 404–415 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Artstein, Z.: A variational problem determined by probability measures. Optimization 68, 81–98 (2019)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Aumann, R.J.: Integrals of set-valued functions. J. Math. Anal. Appl. 12, 1–12 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Aumann, R.J., Perles, M.A.: A variational problem arising in economics. J. Math. Anal. Appl. 11, 488–503 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Balder, E.J.: New existence results for optimal controls in the absence of convexity: the importance of extremality. SIAM J. Control Optim. 32, 890–916 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Balder, E.J.: Lectures on Young measure theory and its applications to economics. In: Rend. Istit. Mat. Univ. Trieste. Int. J. Math. 31, supplemento 1, pp. 1–69 (2000)Google Scholar
  8. 8.
    Balder, E.J., Pistorius, M.R.: On an optimal consumption problem for p-integrable consumption plans. Econ. Theory 17, 721–737 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Berliocchi, H., Lasry, J.-M.: Intégrandes normales et mesures paramétrées en calcul des variations. Bull. Soc. Fr. 101, 129–184 (1973)zbMATHGoogle Scholar
  10. 10.
    Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley, Newyork (1999)Google Scholar
  11. 11.
    Flores-Bazán, F.: Optimal solutions in an allocation process for a continuum of traders. J. Glob. Optim. 16, 153–165 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Flores-Bazán, F., Jourani, A., Mastroeni, G.: On the convexity of the value function for a class of nonconvex variational problems: existence and optimality conditions. SIAM J. Control Optim. 52, 3673–3693 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Flores-Bazán, F., Raymond, J.-P.: A variational problem related to a continuous-time allocation process for a continuum of traders. J. Math. Anal. Appl. 261, 448–460 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Fryszkowski, A.: Fixed Point Theory for Decomposable Sets. Kluwer Academic Publishers, Dordrecht (2004)CrossRefzbMATHGoogle Scholar
  15. 15.
    González-Hernández, J., Hernández-Lerma, O.: Extreme points of sets of randomized strategies in constrained optimization and control problems. SIAM J. Optim. 15, 1085–1104 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Halkin, H.: Some further generalizations of a theorem of Lyapunov. Arch. Rational Mech. Anal. 17, 272–277 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ioffe, A.: Variational problem associated with a model of welfare economics with a measure space of agents. In: Kusuoka, S., Yamazaki, A (eds.) Advances in Mathematical Economics, vol. 8, pp. 297–314. Springer, Tokyo (2006)Google Scholar
  18. 18.
    Ioffe, A.: An invitation to tame optimization. SIAM J. Optim. 19, 1894–1917 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    loffe, A.D., Tikhomirov, V.M.: On minimization of integral functionals. Funct. Anal. Appl. 3, 218–227 (1969)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Khan, M.A., Sagara, N.: The bang-bang, purification and convexity principles in infinite dimensions. Set-Valued Var. Anal. 22, 721–746 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Maruyama, T.: An extension of the Aumann–Perles’ variational problem. Proc. Jpn. Acad. Ser. A Math. Sci. 55, 348–352 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Maruyama, T.: Continuity theorem for non-linear integral functionals and Aumann–Perles’ variational problem. Proc. Jpn. Acad. Ser. A Math. Sci. 62, 163–165 (1986)CrossRefzbMATHGoogle Scholar
  23. 23.
    Olech, C.: Decomposability as a substitute for convexity. In: Salinetti, G (ed.) Multifunctions and Integrands (Catania, 1983). Lecture Notes in Mathematics, vol. 1091, pp. 193–205. Springer, Berlin (1984)Google Scholar
  24. 24.
    Olech, C.: The Lyapunov Theorem: its extensions and applications. In: Ekeland, I. et al. (eds.) Methods of Nonconvex Analysis. Lecture Notes in Mathematics, vol. 1446, pp. 84–103. Springer, Berlin (1990)Google Scholar
  25. 25.
    Rockafellar, R.T.: Integrals which are convex functionals. Pac. J. Math. 24, 525–539 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Sagara, N.: An indirect method of nonconvex variational problems in Asplund spaces: the case for saturated measure spaces. SIAM J. Control Optim. 53, 336–351 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Valadier, M.: A course on Young measures. Rend. Istit. Mat. Univ. Trieste 26, 349–394 (1994)MathSciNetzbMATHGoogle Scholar

Copyright information

© Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.The Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations