Advertisement

Deconvolution of a Cumulative Distribution Function with Some Non-standard Noise Densities

  • Dang Duc Trong
  • Cao Xuan Phuong
Article
  • 12 Downloads

Abstract

Let X be a continuous random variable having an unknown cumulative distribution function F. We study the problem of estimating F based on i.i.d. observations of a continuous random variable Y from the model Y = X + Z. Here, Z is a random noise distributed with known density g and is independent of X. We focus on some cases of g in which its Fourier transform can vanish on a countable subset of ℝ. We propose an estimator \(\hat F\) for F and then investigate upper bounds on convergence rate of \(\hat F\) under the root mean squared error. Some numerical experiments are also provided.

Keywords

Deconvolution Cumulative distribution function Non-standard noise densities 

Mathematics Subject Classification (2010)

62G05 62G20 

Notes

Acknowledgements

We would like to thank the reviewers for their kind and careful reading of the paper and for helpful comments and suggestions which led to this improved version.

Funding Information

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2016.26.

References

  1. 1.
    Butucea, C., Comte, F.: Adaptive estimation of linear functionals in the convolution model and applications. Bernoulli 15, 69–98 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cordy, C.B., Thomas, D.R.: Deconvolution of a distribution function. J. Am. Stat. Assoc. 92, 1459–1465 (1997)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Comte, F., Lacour, C.: Data-driven density estimation in the presence of additive noise with unknown distribution. J. R. Stat. Soc. Ser. B 73, 601–627 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Devroye, L.: Consistent deconvolution in density estimation. Can. J. Stat. 17, 235–239 (1989)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Diggle, P.J., Hall, P.: A Fourier approach to nonparametric deconvolution of a density estimate. J. R. Stat. Soc. Ser. B 55, 523–531 (1993)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Delaigle, A., Meister, A.: Nonparametric function estimation under Fourier-oscillating noise. Stat. Sin. 21, 1065–1092 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dattner, I., Goldenshluger, A., Juditsky, A.: On deconvolution of distribution functions. Ann. Stat. 39, 2477–2501 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dattner, I., Reiser, B.: Estimation of distribution functions in measurement error models. J. Stat. Plan. Inference 143, 479–493 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dattner, I.: Deconvolution of P(X < Y ) with supersmooth error distributions. Stat. Probab. Lett. 83, 1880–1887 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fan, J.: On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Stat. 19, 1257–1272 (1991)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gil-Pelaez, J.: Note on the inversion theorem. Biometrika 38, 481–482 (1951)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gaffey, W.R.: A consistent estimator of a component of a convolution. Ann. Math. Stat. 30, 198–205 (1959)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hall, P., Meister, A.: A ridge-parameter approach to deconvolution. Ann. Stat. 35, 1535–1558 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kawata, T.: Fourier Analysis in Probability Theory. Academic Press, New York (1972)zbMATHGoogle Scholar
  15. 15.
    Kappus, J., Mabon, G.: Adaptive density estimation in deconvolution problems with unknown error distribution. Electron. J. Stat. 8, 2879–2904 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Levin, B.: Lectures on Entire Functions. Translations of Mathematical Monographs, vol. 150. American Mathematical Society, Providence (1996)Google Scholar
  17. 17.
    Meister, A.: Deconvolving compactly supported densities. Math. Methods Stat. 16, 63–76 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Meister, A.: Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions. Inverse Probl. 24, 015003 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Neumann, M.H., Hössjer, O.: On the effect of estimating the error density in nonparametric deconvolution. J. Nonparametr. Stat. 7, 307–330 (1997)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Pensky, M.: Minimax theory of estimation of linear functionals of the deconvolution density with or without sparsity. Ann. Stat. 45, 1516–1541 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Trong, D.D., Phuong, C.X., Tuyen, T.T., Thanh, D.N.: Tikhonov’s regularization to the deconvolution problem. Commun. Stat. Theory Methods 43, 4384–4400 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Trong, D.D., Phuong, C.X.: Ridge-parameter regularization to deconvolution problem with unknown error distribution. Vietnam. J. Math. 43, 239–256 (2015)MathSciNetzbMATHGoogle Scholar

Copyright information

© Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer ScienceUniversity of Science, Vietnam National University Ho Chi Minh CityHo Chi Minh CityVietnam
  2. 2.Faculty of Mathematics and StatisticsTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations