The Geometry of Locally Symmetric Affine Surfaces



We examine the local geometry of affine surfaces which are locally symmetric. There are six non-isomorphic local geometries. We realize these examples as type \(\mathcal {A}\), type \(\mathcal {B}\), and type \(\mathcal {C}\) geometries using a result of Opozda and classify the relevant geometries up to linear isomorphism. We examine the geodesic structures in this context. Particular attention is paid to the Lorentzian analogue of the hyperbolic plane and to the pseudosphere.


Ricci tensor Symmetric affine surface Geodesic completeness 

Mathematics Subject Classification (2010)




Research partially supported by project MTM2016-75897-P (Spain).


  1. 1.
    Brozos-Vázquez, M., García-Río, E., Gilkey, P.: Homogeneous affine surfaces: affine killing vector fields and gradient Ricci solitons. J. Math. Soc. Japan 70, 25–70 (2018)MathSciNetCrossRefGoogle Scholar
  2. 2.
    D’Ascanio, D., Gilkey, P., Pisani, P.: Geodesic completeness for type \(\mathcal {A}\) surfaces. Differential Geom. Appl. 54A, 31–43 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Koh, S.: On affine symmetric spaces. Trans. Am. Math. Soc. 119, 291–309 (1965)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Nomizu, K.: Invariant affine connections on homogeneous spaces. Am. J. Math. 76, 33–65 (1954)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Opozda, B.: Affine versions of Singer’s theorem on locally homogeneous spaces. Ann. Glob. Anal. Geom. 15, 187–199 (1997)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Opozda, B.: A classification of locally homogeneous connections on 2-dimensional manifolds. Differential Geom. Appl. 21, 173–198 (2004)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Pecastaing, V.: On two theorems about local automorphisms of geometric structures. Ann. Inst. Fourier Grenoble 66, 175–208 (2016)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Instituto de Física La Plata, CONICET and Departamento de Física, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.Mathematics DepartmentUniversity of OregonEugeneUSA

Personalised recommendations