Advertisement

Load Distribution in Meshing Process of Micro-segment Gears

  • Kang Huang
  • Meng Sang
  • Yangshou XiongEmail author
  • Yong Yi
  • Fengwei Xu
Originalarbeiten/Originals
  • 10 Downloads

Abstract

In this paper, a precise transverse micro-segment tooth profile is established. Subsequently, a load distribution model of micro-segment gears is proposed based on the method of elastic potential energy. A method for choosing an equivalent base circle is proposed to accurately calculate the tooth force of each tooth pair of spur micro-segment gears. Similar to spur gears, a torque distribution method is also established for helical micro-segment gears. Based on the simulation analysis of different basic micro-segment parameters, their significant influence on the load distribution is presented. In addition, it is found that during an entire contact period, the maximal tooth force of a micro-segment gear pair is smaller than that of an involute gear pair. The model is also validated by the finite element method. This model provides a rapid and effective approach to determine the load for the subsequent analysis of the contact and bending strengths of micro-segment gears.

Lastverteilung in dem Meshing-Prozess von Mikrosegmentzahnrädern

Zusammenfassung

In dieser Arbeit ist ein genaues transversales Mikro-Segmentzahnprofil erstellt. Anschließend ist ein Lastverteilungsmodell von Mikrosegmentzahnrädern vorgeschlagen, das auf der Methode der elastischen potentiellen Energie basiert. Ein Verfahren zur Auswahl eines äquivalenten Grundkreises ist vorgeschlagen, um die Zahnkraft jedes Zahnpaares von Mikro-Stirnradsegment genau zu berechnen. Ähnlich wie bei Stirnrädern ist auch bei schrägverzahnten Mikrosegmenträdern ein Drehmomentverteilungsverfahren etabliert. Basierend auf der Simulationsanalyse verschiedener grundlegender Mikrosegmentparameter ist ihr signifikanter Einfluss auf die Lastverteilung dargestellt. Darüber hinaus wird festgestellt, dass während einer gesamten Kontaktdauer die maximale Zahnkraft eines Mikrosegment-Zahnradpaares kleiner ist als die eines Evolventen-Zahnradpaares. Das Modell ist auch mit der Finite-Elemente-Methode validiert. Dieses Modell bietet einen schnellen und effektiven Ansatz zur Bestimmung der Belastung für die anschließende Analyse der Kontakt- und Biegefestigkeiten von Mikrosegmentzahnrädern.

Notes

Funding

This work is supported by the National Natural Science Foundation of China (51775156), Natural Science Foundation of Anhui Province of China (1908085QE228) and the Fundamental Research Funds for the Central Universities of China (JZ2018HGTA0206, JZ2018HGBZ0101, PA2019GDZC0101).

References

  1. 1.
    ISO Standard 6336-1:2006. Calculation of load capacity of spur and helical gears—Part 1: basic principles, introduction and general influence factors. International Organization for Standardization, Geneva, Switzerland, 2006.Google Scholar
  2. 2.
    ISO Standard 6336-2:2006. Calculation of load capacity of spur and helical gears—Part 2: calculation of surface durability (pitting). International Organization for Standardization, Geneva, Switzerland, 2006.Google Scholar
  3. 3.
    ISO Standard 6336-3:2006. Calculation of load capacity of spur and helical gears—Part 3: calculation of tooth bending strength. International Organization for Standardization, Geneva, Switzerland, 2006.Google Scholar
  4. 4.
    American Gear Manufacturers Association (2004) AGMA standard 2001-D04. Fundamental rating factors and calculation methods for involute spur and helical gear teethGoogle Scholar
  5. 5.
    American Gear Manufacturers Association (1989) AGMA information sheet 908-B89. Geometry factors for determining the pitting resistance and bending strength of spur. Helical and herringbone gear teethGoogle Scholar
  6. 6.
    Weber C (1949) The deflection of loaded gears and the effects on their load carrying capacity. Department of Scientific and Industrial Research, Sponsored Research. report(3).Google Scholar
  7. 7.
    Weber C, Banaschek K (1953) Formänderung und Profilrücknahme bei Gerad- und Schrägverzahnten Rädern. Schriftenreihe Antriebstechnik 11. Vieweg, BraunschweigGoogle Scholar
  8. 8.
    Pedersen NL, Jorgensen MF (2014) On gear tooth stiffness evaluation. Comput Struct 135:109–117CrossRefGoogle Scholar
  9. 9.
    Ye S‑Y, Tsai S‑J (2016) A computerized method for loaded tooth contact analysis of high-contact-ratio spur gears with or without flank modification considering tip corner contact and shaft misalignment. Mech Mach Theory 97:190–214CrossRefGoogle Scholar
  10. 10.
    Marques PMT, Martins RC, Seabra JHO (2015) Load distribution in spur gears including the effects of friction. In: New trends in mechanism and machine science, pp 789–797CrossRefGoogle Scholar
  11. 11.
    Pedrero JI, Pleguezuelos M, Artés M, Antona JA (2010) Load distribution model along the line of contact for involute external gears. Mech Mach Theory 45(5):780–794CrossRefGoogle Scholar
  12. 12.
    Sánchez MB, Pleguezuelos M, Pedrero JI (2017) Approximate equations for the meshing stiffness and the load sharing ratio of spur gears including Hertzian effects. Mech Mach Theory 109:231–249CrossRefGoogle Scholar
  13. 13.
    Sánchez MB, Pleguezuelos M, Pedrero JI (2013) Enhanced model of load distribution along the line of contact for non-standard involute external gears. Meccanica 48(3):527–543CrossRefGoogle Scholar
  14. 14.
    Marques PMT, Martins RC, Seabra JHO (2016) Power loss and load distribution models including frictional effects for spur and helical gears. Mech Mach Theory 96:1–25CrossRefGoogle Scholar
  15. 15.
    Komori T, Ariga R, Nagata S (1988) A new profile of relative curvature being zero at many contact points. In: Proceedings of the International Conference on Gearing, vol 1. CMES, Beijing, pp 39–42Google Scholar
  16. 16.
    Komori T, Ariga R, Nagata S (1989) A new gear profile having zero relative curvature at many contact points (LogiX tooth profile). In: Proceedings of the International Power Transmission and Gearing Conference, ASME, Chicago, ill, USA. April 1989, vol 2, pp 599–606Google Scholar
  17. 17.
    Zhao H, Liang JH, Liu HY, Chen AS (1997) Constructing principle and features of tooth profiles with micro-segment. Chin J Mech Eng 33:7–11Google Scholar
  18. 18.
    Liu HY, Zhao H, Liang JH (2003) Analysis of durability and Inflexion strength of micro-segment gears. J Univ Shanghai Sci Technol 25(3):277–280Google Scholar
  19. 19.
    Huang K, Zhao H, Jiang XB (2002) Comparison test research on transmission efficiency between micro-segment gears and involute gears. J Mech Strength 26(4):3–6Google Scholar
  20. 20.
    Huang K, Zhao H, Tian J (2006) Experimental research on temperature rise comparison between micro-segment gear and involute gear. China Mech Eng 18:1880–1883Google Scholar
  21. 21.
    Huang K, Zhao H, Wang WR (2000) Mull-object optimum design of tooth profile with micro-segment gear hobs. J Mech Transm 24(4):6–7Google Scholar
  22. 22.
    Chen Q, Zhao H, Huang K (2011) Study on calculation of transmission efficiency about the micro-segment gear. China Mech Eng 22(13):1537–1539Google Scholar
  23. 23.
    Zhao H, Huang K, Ding SG (2003) Comparison test research on bending stress of micro-segment gear. J Mech Strength 25(1):110–112Google Scholar
  24. 24.
    Huang K, Xiong YS (2016) Bifurcation and chaos characteristic analysis of spur micro-segment gear pair. J Vibroengineering 18(7):4792–4811CrossRefGoogle Scholar
  25. 25.
    Xiong YS, Huang K, Wang T, Chen Q, Xu R (2016) Dynamic modelling and analysis of the microsegment gear. Shock Vib 10:1155Google Scholar
  26. 26.
    Ma H, Song RZ, Pang X, Wen BC (2014) Time-varying mesh stiffness calculation of cracked spur gears. Eng Fail Anal 44(6):179–194CrossRefGoogle Scholar
  27. 27.
    Zhou XJ, Shao YM, Lei YG, Zuo MJ (2012) Time-varying meshing stiffness calculation and vibration analysis for a 16DOF dynamic model with linear crack growth in a pinion. J Vib Acoust 134(1):11011CrossRefGoogle Scholar
  28. 28.
    Fakher C, Fakhfakh T, Haddar M (2009) Analytical modelling of spur gear tooth crack and influence on gear mesh stiffness. Eur J Mech A Solids 28(3):461–468CrossRefGoogle Scholar
  29. 29.
    Philippe S, Velex P, Duverger O (2004) Contribution of gear body to tooth deflections—a new bidimensional analytical formula. J Mech Des 126(4):748–752CrossRefGoogle Scholar
  30. 30.
    Yang DCH, Sun ZS (1985) A rotary model for spur gear dynamics. J Xian Univ Technol 107(4):529–535Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Kang Huang
    • 1
  • Meng Sang
    • 1
  • Yangshou Xiong
    • 2
    • 3
    Email author
  • Yong Yi
    • 1
  • Fengwei Xu
    • 1
  1. 1.School of Mechanical EngineeringHefei University of TechnologyHefeiChina
  2. 2.Institute of Industry & Equipment TechnologyHefei University of TechnologyHefeiChina
  3. 3.Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and EquipmentHefeiChina

Personalised recommendations