Optimized stator design method using machine parameter permutation

  • Svenja KaltEmail author
  • Jonathan Erhard
  • Markus Lienkamp


In this paper, a new optimized method for the stator design of permanent magnet synchronous machines (PSM) using parameter permutation is introduced. The proposed joint optimization of the groove form and winding design dissolves the fixed sequential steps of the conventional stator design process. This enables a holistic consideration of all possible combinations of machine parameters and aims to find the global optimum for the stator design.

Optimiertes Statorauslegungsverfahren unter Verwendung von Maschinenparameter-Permutation


In dieser Arbeit wird ein neues optimiertes Verfahren für die Statorauslegung von permanenterregten Synchronmaschinen (PSM) unter Verwendung von Parameter Permutation vorgestellt. Die gleichzeitige Optimierung der Nutform und des Wicklungsdesigns löst die festen aufeinanderfolgenden Schritte des konventionellen Statorauslegungsprozesses auf. Dies ermöglicht eine ganzheitliche Betrachtung aller möglichen Kombinationen von Maschinenparametern und zielt darauf ab, das globale Optimum für die Statorauslegung zu finden.



This work was supported by the organization Bayern Innovativ within the research project DeTailED—Design of Tailored Electrical Drivetrains.

Author Contribution

As first author, Svenja Kalt initiated the idea of the presented optimized stator design method, drew up the overall concept of this paper and conducted the analysis. Jonathan Erhard supported as part of his Master’s thesis with the construction of the design concept and implementation. All authors discussed and commented on the article at all stages. Markus Lienkamp made an essential contribution to the conception of the research project. He revised the paper critically for important intellectual content. Markus Lienkamp gave final approval of the version to be published and agrees to all aspects of the work. As a guarantor, he accepts responsibility for the overall integrity of the paper.


  1. 1.
    Müller G, Vogt K, Ponick B (2011) Berechnung elektrischer Maschinen, 6th edn. Wiley-VCH, WeinheimGoogle Scholar
  2. 2.
    Binder A (2012) Elektrische Maschinen und Antriebe: Grundlagen, Betriebsverhalten. Springer, BerlinCrossRefGoogle Scholar
  3. 3.
    Smith A, Delgado D (2010) “Automated AC winding design”, 5th IET International Conference on Power Electronics, Machines and Drives (PEMD 2010), UK, April 2010Google Scholar
  4. 4.
    Steinbrink J (2008) “Design and Analysis of Windings of Electrical Machines”, International Symposium of Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Italy 2008Google Scholar
  5. 5.
    Huth G (1999) Optimierung des Wicklungssystems bei permanentmagneterregten AC-Servomotoren. Electr Eng. CrossRefGoogle Scholar
  6. 6.
    Malti M, Herzog F (1940) Fractional-slot and dead-coil windings. Electr Eng 59:782–794CrossRefGoogle Scholar
  7. 7.
    Meyer W (2009) Automatisierter Entwurf elektromechanischer Wandler. Hieronymus, MunichGoogle Scholar
  8. 8.
    Caruso M et al (2018) A general mathematical formulation for winding layout arrangement of electrical machines. Energies. CrossRefGoogle Scholar
  9. 9.
    Tang K‑T (2007) Mathematical methods for engineers and scientists, Fourier analysis, partial differential equations and variational methods. Springer, Heidelberg, Berlin, New YorkzbMATHGoogle Scholar
  10. 10.
    Giersch H, Harthus H, Vogelsang N (1998) Elektrische Maschinen mit Einführung in die Leistungselektronik. Springer, WiesbadenGoogle Scholar
  11. 11.
    Heiles F (1953) Wicklungen elektrischer Maschinen und ihre Herstellung, 2nd edn. Springer, Heidelberg, Berlin, New YorkCrossRefGoogle Scholar
  12. 12.
    Tang Y et al (2011) Investigation of winding topologies for permanent magnet in-wheel motors. COMPEL. CrossRefGoogle Scholar
  13. 13.
    Pyrhonen J et al (2013) Design of rotating electrical machines. John Wiley & Sons Ltd, ChichesterCrossRefGoogle Scholar
  14. 14.
    Gerling D (2012) Frisch gewickelt. AUTOCAD & Inventor Magazin 4/12, Effizienz- und Kostenoptimierung elektrischer AntriebeGoogle Scholar
  15. 15.
    Gerling D (2011) Trends und Herausforderungen bei zukünftigen E‑Maschinen und Transformatoren. ZVEI, FuldaGoogle Scholar
  16. 16.
    Saadat H (2004) Power systems analysis, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  17. 17.
    Yokoi Y et al (2016) General formulation of winding factor for fractional-slot concentrated winding design. IET Electr Power Appl J. CrossRefGoogle Scholar
  18. 18.
    Bianchi N (2006) Use of the star of slots in designing fractional-slot single layer synchronous motors. IEE Proc Electr Power Appl. CrossRefGoogle Scholar
  19. 19.
    Tingley E (1915) Two- and three phase lap windings in unequal groups. Electr Rev West Electr 66:166–168Google Scholar
  20. 20.
    Wach P (1997) Multi-phase systems of fractional-slot windings of AC electrical machines. Arch Electr Eng 46:471–486Google Scholar
  21. 21.
    Samaha-Fahmy M (1973) Harmonic effects in rotating electical machines, Master’s thesis at the Department of Electrical Engineering, McGill UniversityGoogle Scholar
  22. 22.
    Staton D, Goss J (2017) Open source electric motor models for commercial EV & hybrid traction motors (Motor Design Limited, CWIEME, Berlin)Google Scholar
  23. 23. (2018) Test- und Fahrbericht des BMW i3 – eine Woche elektrifiziert unterwegs. Accessed 8 Jan 2019
  24. 24.
    BMW Group (2016) Technische Daten BMW i3 (94Ah), gültig ab 07/2016. Accessed 4 Jan 2019
  25. 25.
    Borchardt N, Kasper R (2018) Parametric model of electric machines based on exponential Fourier approximations of magnetic air gap flux density and inductance. COMPEL 37(1):520–535CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Automotive TechnologyTechnical University of MunichMunichGermany

Personalised recommendations