Advertisement

Modellierung eines Halbraums mit sphärischem oder zylinderförmigem Hohlraum für dreidimensionale Boden-Bauwerk-Interaktion

  • Julian FreisingerEmail author
  • Gerhard Müller
Originalarbeiten/Originals
  • 10 Downloads

Zusammenfassung

Dieser Beitrag präsentiert eine Berechnungsmethode für die Wellenausbreitung infolge einer dynamischen Belastung in einem elastischen Halbraum mit zylinderförmigem oder sphärischem Hohlraum, Graben oder kugelförmigem Einschnitt. Durch die Superposition der Grundlösungen der Integraltransformationsmethode (Halbraum, Vollraum mit zylinderförmigem Hohlraum und Vollraum mit sphärischem Hohlraum) erhält man für diese Systeme eine semianalytische Lösung im Wellenzahl-Frequenzraum. Daraus resultieren schließlich die wellenzahlabhängigen Nachgiebigkeiten an der Oberfläche des Halbraums sowie des zylindrischen oder sphärischen Einschlusses. Diese Nachgiebigkeiten können dann mit der Finiten-Elemente-Methode gekoppelt werden, so dass beliebige komplexe Strukturen in das Bodenmodell eingebettet werden können.

Modelling of a half space with spherical or cylindrical cavity for three-dimensional Soil-Structure-Interaction

Abstract

This paper presents a calculation method for the wave propagation caused by a dynamic load in an elastic half space with cylindrical or spherical cavities, longitudinal trench or localized excavation. By superposing the fundamental solutions of the Integral Transform Method (half-space, full space with cylindrical cavity and full space with spherical cavity) a semi-analytical solution in the frequency-wave number domain for those systems is derived. Finally, the wave number flexibilities at the surface of the half space as well as the cylindrical or spherical excavation are obtained. By coupling these flexibilities with the Finite-Element-Method arbitrary complex structures can be embedded into the soil model.

Literatur

  1. 1.
    Sommerfeld A (1949) Partial differential equation in physics. Lectures on theoretical physics-pure and applied mathematics. Academic Press, New YorkzbMATHGoogle Scholar
  2. 2.
    Lysmer J (1970) Lumped mass method for Rayleigh waves. Bull Seismol Soc Am 60(1):89–104Google Scholar
  3. 3.
    Waas G (1972) Earth vibration eects and abatement for military facilities: analysis method for footing vibrations through layered mediaGoogle Scholar
  4. 4.
    Park J (2002) Wave motion in finite and infinite media using the thin-layer method. PhD Thesis. Lectures on theoretical physics-pure and applied mathematics. Massachusetts Institute of Technology, Cambridge, MA. http://hdl.handle.net/1721.1/43616 Google Scholar
  5. 5.
    Kausel E (1994) Thin-layer method: formulation in the time domain. Int J Numer Methods Eng 37(6):927–941MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Baffet D, Bielak J, Givoli D, Hagstrom T, Rabinovich D (2012) Long-time stable high-order absorbing boundary conditions for elastodynamics. Comput Methods Appl Mech Eng 241:20–37MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Givoli D (1991) Non-reflecting boundary conditions. J Comput Phys 94(1):1–29MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Engquist B, Majda A (1977) Absorbing boundary conditions for numerical simulation of waves. Proc Natl Acad Sci USA 74(5):1765–1766MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bettess P (1977) Infinite elements. Int J Numer Methods Eng 11(1):53–64MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Zienkiewicz OC, Emson C, Bettess P (1983) A novel boundary infinite element. Int J Numer Methods Eng 19(3):393–404MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Mahran E (2004) Finite-Infinite-Elemente-Modellierung zur Simulation der Boden-Bauwerk-Flüssigkeit-Interaktion unter dynamischer Anregung. Universität Wuppertal, WuppertalGoogle Scholar
  12. 12.
    Berenger J‑P (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114(2):185–200MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Basu U, Chopra AK (2003) Perfectly matched layers for time-harmonic elastodynamics of unbounded domains. Theory and finite-element implementation. Comput Methods Appl Mech Eng 192(11–12):1337–1375CrossRefzbMATHGoogle Scholar
  14. 14.
    Johnson AN (2006) Development of a three dimensional perfectly matched layer for transient elaso-dynamic Analysis, Dissertation. Naval postgraduate schoolGoogle Scholar
  15. 15.
    François S, Schevenels M, Lombaert G, Degrande G (2012) A two-and-a-half-dimensional displacement-based PML for elastodynamic wave propagation. Int J Numer Methods Eng 90(7):819–837MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fontara I‑K, Schepers W, Savidis S, Rackwitza F (2017) FE/PML numerical schemes for dynamic soil-structure interaction and seismic wave propagation analysis. Procedia Eng 199:2348–2353CrossRefGoogle Scholar
  17. 17.
    Kausel E, Barbosa JM (2012) PMLs. A direct approach. Int J Numer Methods Eng 90(3):343–352MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gaul L, Kögl M, Wagner M (2013) Boundary element methods for engineers and scientists: an introductory course with advanced topics. Springer Science & Business Media, Heidelberg, Berlin, New YorkzbMATHGoogle Scholar
  19. 19.
    Manolis GD, Beskos DE (1988) Boundary element methods in elastodynamics. Taylor & Francis, AbingdonGoogle Scholar
  20. 20.
    Beer G, Watson JO (1989) Infinite boundary elements. Int J Numer Methods Eng 28(6):1233–1247CrossRefzbMATHGoogle Scholar
  21. 21.
    Chuhan Z, Song C (1991) Infinite boundary elements for dynamic problems of 3‑D half space. Int J Numer Methods Eng 31(3):447–462CrossRefzbMATHGoogle Scholar
  22. 22.
    Andersen L, Jones CJC (2006) Coupled boundary and finite element analysis of vibration from railway tunnels—a comparison of two- and three-dimensional models. J Sound Vib 293(3–5):611–625CrossRefGoogle Scholar
  23. 23.
    Sheng X, Jones CJC, Thompson DJ (2005) Modelling ground vibration from railways using wavenumber finite- and boundary-element methods. Proc R Soc A Math Phys Eng Sci 461(2059):2043–2070MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Clouteau D, Arnst M, Al-Hussaini TM, Degrande G (2005) Freefield vibrations due to dynamic loading on a tunnel embedded in a stratified medium. J Sound Vib 283(1–2):173–199CrossRefGoogle Scholar
  25. 25.
    Lombaert G, Degrande G, Kogut J, François S (2006) The experimental validation of a numerical model for the prediction of railway induced vibrations. J Sound Vib 297(3–5):512–535CrossRefGoogle Scholar
  26. 26.
    Coulier P, Degrande G, Dijckmans A, Houbrechts J, Lombaert G, Rücker W, Auersch L, Plaza M, Cuellar V, Thompson D et al (2011) Scope of the parametric study on mitigation measures on the transmission path. RIVAS project SCP0-GA-2010-265754, Deliverable D 4Google Scholar
  27. 27.
    Dijckmans A, Coulier P, Jiang J, Toward MGR, Thompson DJ, Degrande G, Lombaert G (2015) Mitigation of railway induced ground vibration by heavy masses next to the track. Soil Dyn Earthq Eng 75:158–170CrossRefGoogle Scholar
  28. 28.
    Thompson DJ, Jiang J, Toward MGR, Hussein MFM, Dijckmans A, Coulier P, Degrande G, Lombaert G (2015) Mitigation of railway-induced vibration by using subgrade stiffening. Soil Dyn Earthq Eng 79:89–103CrossRefGoogle Scholar
  29. 29.
    Pao Y‑H, Mow CC (1963) Scattering of plane compressional waves by a spherical obstacle. J Appl Phys 34(3):493–499MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Lee VW (1988) Three-dimensional diffraction of elastic waves by a spherical cavity in an elastic half-space, I: closed-form solutions. Soil Dyn Earthq Eng 7(3):149–161MathSciNetCrossRefGoogle Scholar
  31. 31.
    Datta SK, Shah AH, Wong KC (1984) Dynamic stresses and displacements in buried pipe. J Eng Mech 110(10):1451–1466CrossRefGoogle Scholar
  32. 32.
    Wong KC, Shah AH, Datta SK (1985) Dynamic stresses and displacements in a buried tunnel. J Eng Mech 111(2):218–234CrossRefGoogle Scholar
  33. 33.
    Lin CH, Lee VW, Todorovska MI, Trifunac MD (2010) Zero-stress, cylindrical wave functions around a circular underground tunnel in a flat, elastic half-space: incident P‑waves. Soil Dyn Earthq Eng 30(10):879–894CrossRefGoogle Scholar
  34. 34.
    Liu Q, Zhao M, Wang L (2013) Scattering of plane P, SV or Rayleigh waves by a shallow lined tunnel in an elastic half space. Soil Dyn Earthq Eng 49:52–63CrossRefGoogle Scholar
  35. 35.
    Bian X, Chen Y, Ye X (Hrsg) (2018) Environmental vibrations and transportation geodynamics. Springer, SingaporeGoogle Scholar
  36. 36.
    Konrad A (1985) Der Zylinder, der zylindrische Hohlraum und die dickwandige Kreiszylinderschale unter beliebigen, ruhenden oder bewegten Lasten. Inst. für Bauingenieurwesen I, Technische Universität München, München.Google Scholar
  37. 37.
    Grundmann H, Müller G (1988) Schwingungen infolge zeitlich veränderlicher, bewegter Lasten im Untergrund. Finite-Elemente, Anwendung in der Baupraxis. Ernst & Sohn, BerlinGoogle Scholar
  38. 38.
    Müller K (2007) Dreidimensionale dynamische Tunnel-Halbraum-Interaktion: Ein Verfahren auf der Grundlage einer Kopplung der Integraltransformationsmethode mit der Finite-Elemente-Methode, Technische Universität München Dissertation. MünchenGoogle Scholar
  39. 39.
    Frühe G (2010) Überlagerung von Grundlösungen in der Elastodynamik zur Behandlung der dynamischen Tunnel-Boden-Bauwerk-Interaktion, Technische Universität München Dissertation. MünchenGoogle Scholar
  40. 40.
    Frühe G, Müller G (2010) Dynamic soil-structure interaction applying a hybrid ITM/FEM approach. ISMA 2010.Google Scholar
  41. 41.
    Müller K, Grundmann H, Lenz S (2008) Nonlinear interaction between a moving vehicle and a plate elastically mounted on a tunnel. J Sound Vib 310(3):558–586CrossRefGoogle Scholar
  42. 42.
    Hackenberg M (2016) A coupled integral transform method—finite element method approach to model the soil-structure-interaction, Technische Universität München Dissertation. MünchenGoogle Scholar
  43. 43.
    Kausel E (2006) Fundamental solutions in elastodynamics: a compendium. Cambridge University Press, New YorkCrossRefzbMATHGoogle Scholar
  44. 44.
    Müller G (1989) Ein Verfahren zur Erfassung der Fundament-Boden Wechselwirkung unter Einwirkung periodischer Lasten, Technische Universität München Dissertation. MünchenGoogle Scholar
  45. 45.
    Eringen AC, Suhubi ES (1975) Linear theory. Elstodynamics, Bd. II. Academic Press, New YorkzbMATHGoogle Scholar
  46. 46.
    Abramowitz M, Stegun IA (1988) Handbook of mathematical function: with formulas, graphs and mathematical tables. American Association of Physics TeacherszbMATHGoogle Scholar
  47. 47.
    Freisinger J (2016) Modellierung eines geschichteten Halbraums mit sphärischem Hohlraum, Technische Universität München Master Thesis. MünchenGoogle Scholar
  48. 48.
    Hackenberg M, Dengler M, Müller G (2014) Implementation of the finite element method in the Fourier-transformed domain and coupling with analytical solutions. EURODYN 2014.Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Lehrstuhl für BaumechanikTechnische Universität MünchenMünchenDeutschland

Personalised recommendations