Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of the electrodeposition potential on the photoelectroactivity of the SnS/Sb2S3 thin films

  • 106 Accesses

Abstract

The present work outlines a simple and novel approach to obtain nanostructured and heterostructured SnS/Sb2S3 thin films. This material showed enhanced photoelectroactivity in comparison to the individual tin (II) sulphide (SnS) and antimony (III) sulphide (Sb2S3) films. These nanostructured films were grown by electrodeposition of antimony tin (SbSn) compound followed by sulphurisation under a sulphur vapour atmosphere. The optimisation of the growth methodology was systematically performed by evaluating the photoelectroactivity of the films prepared at different deposition potentials as well as by characterisation of the as-deposited binary compound and the films after sulphurisation. In comparison to the individual SnS and Sb2S3 films, the SnS/Sb2S3 one presented a photocurrent response increased 10-fold compared to the former and 48-fold compared to the latter. Further studies carried out by Mott-Schottky analysis and band gap determination confirmed that the band edge positions of the single SnS and Sb2S3 phases are suitably aligned, forming a type II heterostructure which facilitates minority carriers’ separation and transportation and therefore improves the photocurrent density values.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Khan MA, Ahmed A, Ali N, Iqbal T, Khan AA, Ullah M, Shafique M (2016) Improved optical properties of tin antimony sulphide thin films for photovoltaics. Am J Mater Sci Eng 4(1):1–6

  2. 2.

    Cho JY, Sinha S, Gang MG, Heo J (2019) Controlled thickness of a chemical-bath-deposited CdS buffer layer for a SnS thin film solar cell with more than 3% efficiency. J Alloys Compd 796:160–166

  3. 3.

    Wu Y, Wei T, An X, Liu L-M (2019) Colloidal synthesis of SnS nanocrystals with dimension-dependent photoelectrochemical properties. New J Chem 43:7457–7462

  4. 4.

    Lei H, Chen J, Tan Z, Fang G (2019) Review of recent progress in antimony chalcogenide-based solar cells: materials and device. Sol RRL 3:1900026

  5. 5.

    DeAngelis AD, Kemp KC, Gaillard N, Kim KS (2016) Antimony (III) sulfide thin films as a photoanode material in photocatalytic water splitting. ACS Appl Mater Interfaces 8(13):8445–8451

  6. 6.

    Banai RE, Horn MW, Brownson JRS (2016) A review of tin (II) monosulfide and its potential as a photovoltaic absorber. Sol Energy Mater Sol Cells 150:112–129

  7. 7.

    Pejjai B, Reddy VRM, Gedi S, Park C (2017) Status review on earth-abundant and environmentally green Sn-X (X=Se, S) nanoparticle synthesis by solution methods for photovoltaic applications. Int J Hydrog Energy 42:2790–2831

  8. 8.

    Huang P-C, Shen Y-M, Brahma S, Shaikh MO, Huang J-L, Wang S-C (2017) SnSx (x = 1, 2) nanocrystals as effective catalysts for photoelectrochemical water splitting. Catalysts 7:252

  9. 9.

    Burton LA, Whittles TJ, Hesp D, Linhart WM, Skelton JM, Hou B, Webster RF, O'Dowd G, Reece C, Cherns D, Fermin DJ, Veal TD, Dhanak VR, Walsh A (2016) Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst. J Mater Chem A 4:1312–1318

  10. 10.

    Whittles TJ, Burton LA, Skelton JM, Walsh A, Veal TD, Dhanak VR (2016) Band alignments, valence bands, and core levels in the tin sulfides SnS, SnS2, and Sn2S3: experiment and theory. Chem Mater 28(11):3718–3726

  11. 11.

    Bouroushian M (2010) Electrochemistry of metal chalcogenides. Springer

  12. 12.

    Yang F, Xi J, Gan L-Y, Wang Y, Lu S, Ma W, Cai F, Zhang Y, Cheng C, Zhao Y (2016) Improved charge transfer and photoelectrochemical performance of CuI/Sb2S3/TiO2 heterostructure nanotube arrays. J Colloid Interface Sci 464:1–9

  13. 13.

    Medina-Montes MI, Montiel-González Z, Paraguay-Delgado F, Mathews NR, Mathew X (2016) Structural, morphological and spectroscopic ellipsometry studies on sputter deposited Sb2S3 thin films. J Mater Sci Mater Electron 27(9):9710–9719

  14. 14.

    Baek I-H, Pyeon JJ, Song YG, Chung T-M, Kim H-R, Baek S-H, Kim J-S, Kang C-Y, Choi J-W, Hwang CS, Han JH, Kim SK (2017) Synthesis of SnS thin films by atomic layer deposition at low temperatures. Chem Mater 29:8100–8110

  15. 15.

    Jo H-J, Mun YH, Kim JS (2018) Determination of carrier lifetimes in organic-inorganic hybrid solar cells based on Sb2S3 by using the time-resolved photocurrent. J Korean Phys Soc 72(6):709–715

  16. 16.

    Kim J, Kim J, Yoon S, Kang J, Jeon C-W, Jo W (2018) Single phase formation of SnS competing with SnS2 and Sn2S3 for photovoltaic applications: optoelectronic characteristics of thin-film surfaces and interfaces. J Phys Chem C 122(6):3523–3232

  17. 17.

    Gao C, Huang J, Li H, Sun K, Lai Y, Jia M, Jiang L, Liu F (2019) Fabrication of Sb2S3 thin films by sputtering and post-annealing for solar cells. Ceram Int 45:3044–3051

  18. 18.

    Yu D, Li Q, Wei A, Zhao Y, Liu J, Xiao Z (2019) Synthesis and characterization of the ultra-thin SnS flakes and the micron-thick SnS crystals by chemical vapor deposition. J Mater Sci Mater Electron 30:10879–10885

  19. 19.

    Murtaza G, Akhtar M, Malik MA, O’Brien P, Revaprasadu N (2015) Aerosol assisted chemical vapor deposition of Sb2S3 thin films: environmentally benign solar energy material. Mater Sci Semicond Process 40:643–649

  20. 20.

    Jamali-Sheini F, Cheraghizade M, Yousefi R (2016) SnS nanosheet films deposited via thermal evaporation: the effects of buffer layers on photovoltaic performance. Sol Energy Mater Sol Cells 154:49–56

  21. 21.

    Reddy NK, Reddy KTR (2006) Optical behaviour of sprayed tin sulphide thin films. Mater Res Bull 41:414–422

  22. 22.

    Boughalmi R, Boukhachem A, Kahlaoui M, Maghraoui H, Amlouk M (2014) Physical investigations on Sb2S3 sprayed thin film for optoelectronic applications. Mater Sci Semicond Process 26:593–602

  23. 23.

    Mahdi MS, Ibrahim K, Hmood A, Ahmed NM, Mustafa FI (2017) Control of phase, structural and optical properties of tin sulfide nanostructured thin films grown via chemical bath deposition. J Electron Mater 46(7):4227–4235

  24. 24.

    Krishnan B, Arato A, Cardenas E, Das RTK, Castillo GA (2008) On the structure, morphology, and optical properties of chemical bath deposited Sb2S3 thin films. Appl Surf Sci 254:3200–3206

  25. 25.

    Zhou Y, Wang L, Chen S, Qin S, Liu X, Chen J, Xue D-J, Luo M, Cao Y, Cheng Y, Sargent EH, Tang J (2015) Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nat Photonics 9:409–415

  26. 26.

    Lucas FWS, Mascaro LH (2018) Electrochemical deposition of the single phase TlxCu3 – xSe2 thin films. J Braz Chem Soc 0(0):1–8

  27. 27.

    Niknia F, Jamali-Sheini F, Yousefi R, Cheraghizade M (2018) Effect of thickness on the optoelectronic properties of electrodeposited nanostructured SnS films. Opt Quant Electron 50:339

  28. 28.

    Cheng S, Chen G, Chen Y, Huang C (2006) Effect of deposition potential and bath temperature on the electrodeposition of SnS film. Opt Mater (Amst) 29:439–444

  29. 29.

    Kafashan H, Azizieh M, Balak Z (2017) Electrochemical synthesis of nanostructured se-doped SnS: effect of Se-dopant on surface characterizations. Appl Surf Sci 410:186–195

  30. 30.

    Niknia F, Jamali-Sheini F, Yousefi R (2016) Examining the effect of Zn dopant on physical properties of nanostructured SnS thin film by using electrodeposition. J Appl Electrochem 46:323–330

  31. 31.

    Zhang S, Cheng S, Jia H, Zhou H (2012) Preparation and characterization of aluminium-doped SnS thin films. Adv Mater Res 418-420:712–716

  32. 32.

    Garcia RGA, Avendaño CAM, Pal M, Delgado FP, Mathews NR (2016) Antimony sulfide (Sb2S3) thin films by pulse electrodeposition: effect of thermal treatment on structural, optical and electrical properties. Mater Sci Semicond Process 44:91–100

  33. 33.

    Yesugade NS, Lokhande CD, Bhosale CH (1995) Structural and optical properties of electrodeposited Bi2S3, Sb2S3 and As2S3 thin films. Thin Solid Films 263:145–149

  34. 34.

    Sarangi CK, Baral A, Panigrahi J, Sanjay K, Subbaiah T, Mishra BK (2014) Electro-crystallization of antimony from acidic and alkaline baths in diaphragm-less cell. Adv Mater Res 828:65–72

  35. 35.

    Cheng W, Singh N, Elliott W, Lee J, Rassoolkhani A, Jin X, McFarland EW, Mubeen S (2018) Earth-abundant tin sulfide-based photocathodes for solar hydrogen production. Adv Sci 5:1700362

  36. 36.

    Vequizo JJM, Yokoyama M, Ichimura M, Yamakata A (2016) Enhancement of photoelectrochemical activity of SnS thin-film photoelectrodes using TiO2, Nb2O5, and Ta2O5 metal oxide layers. Appl Phys Express 9:67101

  37. 37.

    Cai Q, Liu Z, Han C, Tong Z, Ma C (2019) CuInS2/Sb2S3 heterostructure modified with noble metal co-catalyst for efficient photoelectrochemical water splitting. J Alloys Compd 795:319–326

  38. 38.

    Jiang L, Chen J, Wang Y, Pan Y, Xiao B, Ouyang N, Liu F (2018) Sb2O3/Sb2S3 Heterojunction composite thin film photoanode prepared via chemical bath deposition and post-sulfidation. J Electrochem Soc 165(16):H1052–H1058

  39. 39.

    Bera S, Roy A, Guria AK, Mitra S, Pradhan N (2019) Insights of diffusion doping in formation of dual-layered material and doped heterostructure SnS−Sn:Sb2S3 for sodium ion storage. J Phys Chem Lett 10(5):1024–1030

  40. 40.

    Costa MB, Lucas FWS, Mascaro LH (2019) Electrodeposition conditions effect Sb2Se3 thin-film properties. ChemEletroChem 6:2937–2944

  41. 41.

    Lucas FWS, Lima ARF, Mascaro LH (2014) The electrodeposition of Ga-doped CuInSe2 thin film in the presence of triton 100-X. Electrochim Acta 147:47–53

  42. 42.

    Guaus E, Torrent-Burgués J (2005) Tin-zinc electrodeposition from sulphate-tartrate baths. J Electroanal Chem 575(2):301–309

  43. 43.

    Garnica MC, Arcos J, Palacios JL (1990) Electroanalytical study of the reduction of Sb (III) in tartrate medium. Anal Lett 23(2):351–363

  44. 44.

    Bratsch SG (1989) Standard electrode potentials and tempearature coefficients in water at 298.15 K. J Phys Chem Ref Data 18:1–21

  45. 45.

    Taguchi ADS, Bento FR, Mascaro LH (2008) Nucleation and growth of tin-zinc electrodeposits on a polycrystalline platinum electrode in tartaric acid. J Braz Chem Soc 19(4):727–733

  46. 46.

    Schiferl D (1977) 50-kilobar gasketed diamond anvil cell for single-crystal x-ray diffractometer use with the crystal structure of Sb up to 26 kilobars as a test problem. Rev Sci Instrum 48(1):24–30

  47. 47.

    Morris MC, McMurdie HF, Evans EH, Paretzkin B, de Groot J (1979) Standard X-ray diffraction powder patterns section 16 - data for 86 substances

  48. 48.

    Fischer A, Scheidt E-W, Scherer W, Benson DE, Wu Y, Eklöf D, Häussermann U (2015) Thermal and vibrational properties of thermoelectric ZnSb: exploring the origin of low thermal conductivity. Phys Rev B 91:224309

  49. 49.

    Drewett NE, Gómez-Cámer JL, Acebedo B, Galceran M, Rojo T (2017) Sol-gel synthesized antimony anodes for sodium-ion batteries: identifying key parameters for optimization. Batteries 3:20

  50. 50.

    Lakshmi D, Nalini B, Sivaraj P, Jayapandi S (2017) Electro analytical studies on indium incorporated SnSb alloy anode for Li-ion batteries. J Electroanal Chem 801:459–465

  51. 51.

    Bayliss P, Nowacki W (1972) Refinement of the crystal structure of stibinite, Sb2S3. Z Krist 135:308–315

  52. 52.

    Wiedemeier H, von Schnering HG (1978) Refinement of the structures of GeS, GeSe, SnS and SnSe. Z Krist 148:295–303

  53. 53.

    Swanson HE, McMurdie HF, Morris MC, Evans EH, Paretzkin B (1971) Standard X-ray diffraction powder patterns section 9 - data for 63 substances

  54. 54.

    Medles M, Benramdane N, Bouzidi A, Sahraoui K, Miloua R, Desfeux R, Mathieu C (2014) Raman and optical studies of spray pyrolysed Sb2S3 thin films. J Optoelectron Adv Mater 16(5–6):726–731

  55. 55.

    Horoz S, Koc H, Sahin Ö (2017) Investigation of structural, optical and photovoltaic properties of Sb2S3 thin films. Cumhur Sci J 38-3:588–593

  56. 56.

    Sohila S, Rajalakshmi M, Ghosh C, Arora AK, Muthamizhchelvan C (2011) Optical and Raman scattering studies on SnS nanoparticles. J Alloys Compd 509:5843–5847

  57. 57.

    Gurnani C, Hawken SL, Hector AL, Huang R, Jura M, Levason W, Perkins J, Reid G, Stenning GBG (2018) Tin (IV) chalcogenoether complexes as single source precursors for the chemical vapour deposition of SnE2 and SnE (E = S, Se) thin films. Dalton Trans 47:2628–2637

  58. 58.

    Paunovic M, Schlesinger M (2006) Fundamentals of electrochemical deposition. John Wiley & Sons, Hoboken

  59. 59.

    Devi LB, Mandal AB (2013) Self-assembly of Ag nanoparticles using hydroxypropyl cyclodextrin: synthesis, characterisation and application for the catalytic reduction of p-nitrophenol. RSC Adv 3:5238–5253

  60. 60.

    Peter LM (1990) Dynamic aspects of semiconductor photoelectrochemistry. Chem Rev 90:753–769

  61. 61.

    Rohloff M, Cosgun S, Massué C, Lunkenbein T, Senyshyn A, Lerch M, Fischer A, Behrens M (2019) The role of synthesis conditions for structural defects and lattice strain in β-TaON and their effect on photo- and photoelectrocatalysis. Z Naturforsch 74(1):71–83

  62. 62.

    Kumar P, Thangaraj R (2009) Effect of Sn addition on the photoconductivity of narrow-gap Sb2Se3 films. Philos Mag Lett 89(4):241–249

  63. 63.

    Shuai X, Shen W (2012) A facile chemical conversion synthesis of Sb2S3 nanotubes and the visible light-driven photocatalytic activities. Nanoscale Res Lett 7:199

  64. 64.

    Alemi A, Hanifehpour Y, Joo SW (2011) Synthesis and characterization of Sb2S3 nanorods via complex decomposition approach. J Nanomater 2011:1–6

  65. 65.

    Peter LM, Gurudayal WLH, Abdi FF (2018) Understanding the role of nanostructuring in photoelectrode performance for light-driven water splitting. J Electroanal Chem 819:447–458

Download references

Funding

This study received financial support from São Paulo Research Foundation (FAPESP) grants: #2016/12681-0 (M.A.A), #2018/03156-5 (F.W.S.L.), #2013/07296-2 (CEPID/CDMF) and #2018/16401-8 (L.H.M.).

Author information

Correspondence to Lucia H. Mascaro.

Additional information

Dedicated to the memory of Ivo Alexandre Hümmelgen

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 5870 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Araújo, M.A., Lucas, F.W.S. & Mascaro, L.H. Effect of the electrodeposition potential on the photoelectroactivity of the SnS/Sb2S3 thin films. J Solid State Electrochem 24, 389–399 (2020). https://doi.org/10.1007/s10008-020-04508-2

Download citation

Keywords

  • Chalcogenide semiconductors
  • Photoelectrochemical cell
  • Water splitting
  • Tin sulphide
  • Antimony sulphide nanorods