Theoretical and experimental study on the size- and morphology-dependent electrochemical thermodynamics of nano-silver electrode

  • Qingshan Fu
  • Hongxu Gao
  • Wengang Qu
  • Fengqi ZhaoEmail author
  • Yongqiang XueEmail author
  • Zixiang Cui
  • Libai Xiao
  • Xiaoning Ren
  • Shiyao Niu
Original Paper


Nanometer-sized electrodes differ greatly from the corresponding bulk electrodes in electrochemical thermodynamics, which is determined by the size and morphology of nanoparticles that constructing the electrodes. However, the influence of size and morphology on the electrochemical thermodynamics remains vague. Herein, the relations of the electrode potential; the temperature coefficient of electrode potential; and the equilibrium constant, thermodynamic properties, and reversible heat of reaction of nanoelectrodes to size and morphology of nanoparticles were systematically deduced. Experimentally, different sizes of nano-silver with morphologies of sphere, wire, and cube were prepared, characterized, and made into nanoelectrodes. And then, the size and morphology-dependent electrochemical thermodynamics of the nanoelectrodes were obtained. Experimental results agree with the theoretical predictions, indicating that with the decrease of particle size, the electrode potential and the reaction equilibrium constant decrease, but the temperature coefficient, the thermodynamic properties, and reversible heat of reaction increase. Furthermore, linear dependences of these electrochemical properties on inverse particle size were confirmed within the experimental size range. At the same equivalent size, the order of size of the electrode potential is E(wire) > E(sphere) > E(cube), while the temperature coefficient and the thermodynamic properties of reaction are opposite. These findings provide important guidance and basis for the design and preparation of highly sensitive electrochemical sensors and chemical cells with high electromotive force and large capacity, and for the electrochemical catalysis and electrochemical corrosion protection.


Particle size Morphology Nanoelectrodes Electrochemistry Thermodynamics 


Funding information

This study is financially supported by the National Natural Science Foundation of China (Nos. 21805225, 21373147, and 21573157).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10008_2019_4486_MOESM1_ESM.docx (118 kb)
ESM1 (DOCX 117 kb)


  1. 1.
    Cai Z, Zhang Y, Zhao Y, Wu Y, Xu W, Wen X, Zhong Y, Zhang Y, Liu W, Wang H, Kuang Y, Sun X (2019) Selectivity regulation of CO2 electroreduction through contact interface engineering on superwetting Cu nanoarray electrodes. Nano Res 12(2):345–349CrossRefGoogle Scholar
  2. 2.
    Habibi B, Pournaghi-Azar MH (2010) Composite electrodes consisting Pt nano-particles and poly (aminophenols) film on pre-treated aluminum substrate as electrocatalysts for methanol oxidation. J Solid State Electrochem 14(4):599–613CrossRefGoogle Scholar
  3. 3.
    Masitas RA, Allen SL, Zamborini FP (2016) Size-dependent electrophoretic deposition of catalytic gold nanoparticles. J Am Chem Soc 138(47):15295–15298CrossRefGoogle Scholar
  4. 4.
    Sage AT, Besant JD, Lam B, Sargent EH, Kelley SO (2014) Ultrasensitive electrochemical biomolecular detection using nanostructured microelectrodes. Acc Chem Res 47(8):2417–2425CrossRefGoogle Scholar
  5. 5.
    Mosa J, Genevrier AC, Grosso D, Robert CL, Sanchez C (2013) Pt||ZrO2 nanoelectrode array synthesized through the sol–gel process: evaluation of their sensing capability. J Solid State Electrochem 17(4):1099–1107CrossRefGoogle Scholar
  6. 6.
    Üzer A, Sağlam S, Can Z, Erçağ E, Apak R (2016) Electrochemical determination of food preservative nitrite with gold nanoparticles/p-aminothiophenol-modified gold electrode. Int J Mol Sci 17(8):1253–1269CrossRefGoogle Scholar
  7. 7.
    Tang Z, Tang C, Gong H (2012) A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes. Adv Funct Mater 22(6):1272–1278CrossRefGoogle Scholar
  8. 8.
    Lia Y, Zhang Y, Li Y, Wang Z, Fu H, Zhang X, Chen Y, Zhang H, Li X (2014) Unveiling the dynamic capacitive storage mechanism of Co3O4@NiCo2O4 hybrid nanoelectrodes for supercapacitor applications. Electrochim Acta 145:177–184CrossRefGoogle Scholar
  9. 9.
    Kalyani M, Emerson RN (2019) Electrodeposition of nano crystalline cobalt oxide on porous copper electrode for supercapacitor. J Mater Sci Mater Electron 30(2):1214–1226CrossRefGoogle Scholar
  10. 10.
    Duan H, Cui Z, Xue Y, Fu Q, Chen X, Zhang R (2018) Influence of particle size on electrochemical thermodynamics of Nano-Au electrodes: mechanism, factors, range and degree. Electrochim Acta 281:292–298CrossRefGoogle Scholar
  11. 11.
    Komaba S, Mikumo T, Ogata A (2008) Electrochemical activity of nanocrystalline Fe3O4 in aprotic Li and Na salt electrolytes. Electrochem Commun 10(9):1276–1279CrossRefGoogle Scholar
  12. 12.
    Yi T, Wang D, Gao K, Hu X (2007) Powder electrochemical properties with different particle sizes of spinel LiAl0.05Mn1.95O4 synthesized by sol-gel method. Rare Metals 26(4):330–334CrossRefGoogle Scholar
  13. 13.
    Plieth WJ (1982) Electrochemical properties of small clusters of metal atoms and their role in the surface-enhanced Raman scattering. J Phys Chem 86:3166–3170CrossRefGoogle Scholar
  14. 14.
    Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89(8):1861–1873CrossRefGoogle Scholar
  15. 15.
    Henglein A (1993) Physicochemical properties of small metal particles in solution: “micro-electrode” reactions, chemisorption, composite metal particles, and the atom-to- metal transition. J Phys Chem 97(21):5457–5471CrossRefGoogle Scholar
  16. 16.
    Chaki NK, Sharma J, Mandle AB, Mulla IS, Pasricha R, Vijayamohanan K (2004) Size dependent redox behavior of mono-layer protected silver nanoparticles (2-7nm) in aqueous medium. Phys Chem Chem Phys 6(6):1304–1309CrossRefGoogle Scholar
  17. 17.
    Redmond PL, Hallock AJ, Brus LE (2005) Electrochemical ostwald ripening of colloidal Ag particles on conductive substrates. Nano Lett 5(1):131–135CrossRefGoogle Scholar
  18. 18.
    Wang LD, Huang ZY, Fan GC, Zhou ZG, Tan XC (2012) Determination of thermodynamic functions for nano-materials via the electrochemical method. Sci China Chem 42:47–51Google Scholar
  19. 19.
    Kai K, Kobayashi Y, Miyashiro H, Oyama G, Nishimura S, Okubo M, Yamada A (2014) Particle-size effects on the entropy behavior of a LixFePO4 electrode. ChemPhysChem 15(10):2156–2161CrossRefGoogle Scholar
  20. 20.
    Yang Y, Xue Y, Cui Z, Zhao M (2014) Effect of particle size on electrode potential and thermodynamics of nanoparticles electrode in theory and experiment. Electrochim Acta 136:565–571CrossRefGoogle Scholar
  21. 21.
    Zhang J, Li Z, Fu Q, Xue Y, Cui Z (2017) The size-dependence of electrochemical thermodynamics of metal nanoparticles electrodes in theory and experiment. J Electrochem Soc 164(12):H828–H835CrossRefGoogle Scholar
  22. 22.
    Fu Q, Xue Y, Cui Z (2018) Size- and shape-dependent surface thermodynamic properties of nanocrystals. J Phys Chem Solids 116:79–85CrossRefGoogle Scholar
  23. 23.
    Molleman B, Hiemstra T (2018) Size and shape dependency of the surface energy of metallic nanoparticles: unifying the atomic and thermodynamic approaches. Phys Chem Chem Phys 20(31):20575–20587CrossRefGoogle Scholar
  24. 24.
    Xue YQ, Gao BJ, Gao JF (1997) The theory of thermodynamics for chemical reactions in dispersed heterogeneous systems. J Colloid Interf Sci 191(1):81–85CrossRefGoogle Scholar
  25. 25.
    Lu HM, Jiang Q (2005) Size-dependent surface tension and Tolman’s length of droplets. Langmuir 21(2):779–781CrossRefGoogle Scholar
  26. 26.
    Xue YQ, Yang XC, Cui ZX, Lai WP (2011) The effect of microdroplet size on the surface tension and Tolman length. J Phys Chem B 115(1):109–112CrossRefGoogle Scholar
  27. 27.
    Cui ZX, Zhao MZ, Lai WP, Xue YQ (2011) Thermodynamics of size effect on phase transition temperatures of dispersed phases. J Phys Chem C 115(46):22796–22803CrossRefGoogle Scholar
  28. 28.
    Yaws CL (1999) Chemical properties handbook, 1st edn. McGraw-Hill Book Co., Singapore, pp 212–235Google Scholar
  29. 29.
    Perry RH, Green DW (2008) Perry’s chemical engineers’ handbook, 8th edn. McGraw-Hill, New York, pp 2–136Google Scholar
  30. 30.
    Tanaka T, Hara S (2001) Thermodynamic evaluation of nano-particle binary alloy phase diagrams. Z Metallkd 92(11):1236–1241Google Scholar
  31. 31.
    Atkins PW, Paula JD (2013) Atkins’ physical chemistry, 7th edn. Oxford University, Oxford, p 262Google Scholar
  32. 32.
    Zoski CG (2007) Handbook of electrochemistry, 1st edn. Elsevier Science, Amsterdam, p 108CrossRefGoogle Scholar
  33. 33.
    Dean JA (1999) Lange’s handbook of chemistry, 15th edn. McGraw-Hill, New York, p 8.134Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Qingshan Fu
    • 1
  • Hongxu Gao
    • 1
  • Wengang Qu
    • 1
  • Fengqi Zhao
    • 1
    Email author
  • Yongqiang Xue
    • 2
    Email author
  • Zixiang Cui
    • 2
  • Libai Xiao
    • 1
  • Xiaoning Ren
    • 1
  • Shiyao Niu
    • 1
  1. 1.Science and Technology on Combustion and Explosion LaboratoryXi’an Modern Chemistry Research InstituteXi’anChina
  2. 2.Department of ChemistryTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations