Journal of Solid State Electrochemistry

, Volume 23, Issue 12, pp 3449–3458 | Cite as

Nickel iron carbonate hydroxide hydrate decorated with CeOx for highly efficient oxygen evolution reaction

  • Jinhua Cai
  • Jiangen Huang
  • Shichen Xu
  • Ling Yuan
  • Xueren Huang
  • Zhipeng HuangEmail author
  • Chi Zhang
Original Paper


Highly active, durable, and inexpensive nanostructured catalysts are crucial for achieving efficiently and economically electrochemical water splitting. In recent years, the introduction of cerium (Ce) into electrocatalysts is an effective way to improve the performance of oxygen evolution reaction (OER). Herein, we report a cerium oxide deposited nickel iron carbonate hydroxide hydrate (NiFeCH(Ce)) on the carbon fiber paper through two-step hydrothermal/electrodeposition approach. The NiFeCH(Ce) not only exhibits a remarkably improved OER performance with an overpotential of 252 mV at a current density of 100 mA cm−2, but also possesses a small Tafel slope of 59 mV dec−1, the both values superior to the most non-noblemetal-based OER electrocatalysts reported. X-ray photoelectron spectroscopy analysis shows that the super OER electrocatalysis performance of the NiFeCH(Ce) was related intensely with the introduction of Ce ions, which not only richer surface defects and higher oxygen adsorption capacity, but also provide more effective charge and mass transfer between intermediates and catalysts, making a great contribution to the OER enhancement.


Nickel iron carbonate hydroxide hydrate Oxygen evolution reaction Cerium oxide Overall water splitting Interfacial effect 



This research was financially supported by the National Natural Science Foundation of China (51772214, 51432006 and 21561017), the Ministry of Science and Technology of China (2011DFG52970), the Ministry of Education of China (IRT14R23), 111 Project (B13025), Jiangsu Province (2011-XCL-019 and 2013-479), the Innovation Program of Shanghai Municipal Education Commission, the Natural Science Foundation of Guangxi Province (2018JJA160004) and the Education Department Foundation of the Jiangxi Province (GJJ160730).

Compliance with ethical standards

Conflict of interest

There are no conflicts to declare.

Supplementary material

10008_2019_4445_MOESM1_ESM.docx (19.9 mb)
ESM 1 (DOCX 20399 kb)


  1. 1.
    Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff IB, Norskov JK, Jaramillo TF (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321)PubMedGoogle Scholar
  2. 2.
    Graetz J (2009) New approaches to hydrogen storage. Chem Soc Rev 38(1):73–82PubMedGoogle Scholar
  3. 3.
    Lin L, Yu Z, Wang X (2019) Crystalline carbon nitride semiconductors for Photocatalytic water splitting. Angew Chem Int Ed 58(19):6164–6175Google Scholar
  4. 4.
    Wang H-F, Tang C, Li B-Q, Zhang Q (2018) A review of anion-regulated multi-anion transition metal compounds for oxygen evolution electrocatalysis. Inorg Chem Front 5(3):521–534Google Scholar
  5. 5.
    Fan K, Chen H, Ji Y, Huang H, Claesson PM, Daniel Q, Philippe B, Rensmo H, Li F, Luo Y, Sun L (2016) Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat Commun 7:11981PubMedPubMedCentralGoogle Scholar
  6. 6.
    Cherevko S, Geiger S, Kasian O, Kulyk N, Grote J-P, Savan A, Shrestha BR, Merzlikin S, Breitbach B, Ludwig A, Mayrhofer KJJ (2016) Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability. Catal Today 262:170–180Google Scholar
  7. 7.
    Reier T, Oezaslan M, Strasser P (2012) Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal 2(8):1765–1772Google Scholar
  8. 8.
    Yu Z, Cantwell PR, Gao Q, Yin D, Zhang Y, Zhou N, Rohrer GS, Widom M, Luo J, Harmer MP (2017) Segregation-induced ordered superstructures at general grain boundaries in a nickel-bismuth alloy. Science 358(6359):97–101PubMedGoogle Scholar
  9. 9.
    Yu Z, Luo J, Harmer MP, Zhu J (2015) An order-disorder transition in surface complexions and its influence on crystal growth of boron-rich nanostructures. Cryst Growth Des 15(8):3547–3551Google Scholar
  10. 10.
    Qiu B, Cai L, Wang Y, Lin Z, Zuo Y, Wang M, Chai Y (2018) Fabrication of nickel-cobalt bimetal phosphide nanocages for enhanced oxygen evolution catalysis. Adv Funct Mater 28(17):1706008Google Scholar
  11. 11.
    Xu K, Ding H, Zhang M, Chen M, Hao Z, Zhang L, Wu C, Xie Y (2017) Regulating water-reduction kinetics in cobalt phosphide for enhancing HER catalytic activity in alkaline solution. Adv Mater 29(28):1606980Google Scholar
  12. 12.
    Ma M, Liu D, Hao S, Kong R, Du G, Asiri AM, Yao Y, Sun X (2017) A nickel–borate–phosphate nanoarray for efficient and durable water oxidation under benign conditions. Inorg Chem Front 4(5):840–844Google Scholar
  13. 13.
    Cai P, Huang J, Chen J, Wen Z (2017) Oxygen-containing amorphous cobalt Sulfide porous Nanocubes as high-activity Electrocatalysts for the oxygen evolution reaction in an alkaline/neutral medium. Angew Chem Int Ed 56(17):4858–4861Google Scholar
  14. 14.
    Zhang N, Gao Y, Mei Y, Liu J, Song W, Yu Y (2019) CuS–Ni3S2 grown in situ from three-dimensional porous bimetallic foam for efficient oxygen evolution. Inorg Chem Front 6(1):293–302Google Scholar
  15. 15.
    Liu Y, Li Q, Si R, Li G-D, Li W, Liu D-P, Wang D, Sun L, Zhang Y, Zou X (2017) Coupling sub-Nanometric copper clusters with quasi-amorphous cobalt Sulfide yields efficient and robust Electrocatalysts for water splitting reaction. Adv Mater 29(13):1606200Google Scholar
  16. 16.
    Wang J, H-x Z, Wang Z-l, F-l M, X-b Z (2016) Integrated three-dimensional carbon paper/carbon tubes/cobalt-Sulfide sheets as an efficient electrode for overall water splitting. ACS Nano 10(2):2342–2348PubMedGoogle Scholar
  17. 17.
    Burke MS, Enman LJ, Batchellor AS, Zou S, Boettcher SW (2015) Oxygen evolution reaction Electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles. Chem Mater 27(22):7549–7558Google Scholar
  18. 18.
    Yang H, Luo S, Bao Y, Luo Y, Jin J, Ma J (2017) In situ growth of ultrathin Ni–Fe LDH nanosheets for high performance oxygen evolution reaction. Inorg Chem Front 4(7):1173–1181Google Scholar
  19. 19.
    Shen J, Wang M, Zhao L, Jiang J, Liu H, Liu J (2018) Self-supported stainless steel nanocone array coated with a layer of Ni-Fe oxides/(oxy)hydroxides as a highly active and robust electrode for water oxidation. ACS Appl Mater Interfaces 10(10):8786–8796PubMedGoogle Scholar
  20. 20.
    Xie C, Wang Y, Hu K, Tao L, Huang X, Huo J, Wang S (2017) In situ confined synthesis of molybdenum oxide decorated nickel-iron alloy nanosheets from MoO42- intercalated layered double hydroxides for the oxygen evolution reaction. J Mater Chem A 5(1):87–91Google Scholar
  21. 21.
    Zhu Y, Chen G, Zhong Y, Chen Y, Ma N, Zhou W, Shao Z (2018) A surface-modified antiperovskite as an electrocatalyst for water oxidation. Nat Commun 9:2326PubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhang Y, Xiao Q, Guo X, Zhang X, Xue Y, Jing L, Zhai X, Yan Y-M, Sun K (2015) A novel electrocatalyst for oxygen evolution reaction based on rational anchoring of cobalt carbonate hydroxide hydrate on multiwall carbon nanotubes. J Power Sources 278:464–472Google Scholar
  23. 23.
    Zhang S, Ni B, Li H, Lin H, Zhu H, Wang H, Wang X (2017) Cobalt carbonate hydroxide superstructures for oxygen evolution reactions. Chem Commun 53(57):8010–8013Google Scholar
  24. 24.
    Tang T, Jiang W-J, Niu S, Liu N, Luo H, Chen Y-Y, Jin S-F, Gao F, Wan L-J, Hu J-S (2017) Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable Bifunctional Electrocatalysts for overall water splitting. J Am Chem Soc 139(24):8320–8328PubMedGoogle Scholar
  25. 25.
    Xie M, Yang L, Ji Y, Wang Z, Ren X, Liu Z, Asiri AM, Xiong X, Sun X (2017) An amorphous co-carbonate-hydroxide nanowire array for efficient and durable oxygen evolution reaction in carbonate electrolytes. Nanoscale 9(43):16612–16615PubMedGoogle Scholar
  26. 26.
    Li J, Huang W, Wang M, Xi S, Meng J, Zhao K, Jin J, Xu W, Wang Z, Liu X, Chen Q, Xu L, Liao X, Jiang Y, Owusu KA, Jiang B, Chen C, Fan D, Zhou L, Mai L (2019) Low-crystalline bimetallic metal-organic framework Electrocatalysts with rich active sites for oxygen evolution. ACS Energy Lett 4(1):285–292Google Scholar
  27. 27.
    Ahn SH, Manthiram A (2019) Hierarchical tri-functional electrocatalysts derived from bimetallic-imidazolate framework for overall water splitting and rechargeable zinc-air batteries. J Mater Chem A 7(14):8641–8652Google Scholar
  28. 28.
    Ma L, Zhang W, Zhao P, Liang J, Hu Y, Zhu G, Chen R, Tie Z, Liu J, Jin Z (2018) Highly efficient overall water splitting driven by all-inorganic perovskite solar cells and promoted by bifunctional bimetallic phosphide nanowire arrays. J Mater Chem A 6(41):20076–20082Google Scholar
  29. 29.
    Karthick K, Anantharaj S, Ede SR, Kundu S (2019) Nanosheets of nickel Iron Hydroxy carbonate hydrate with pronounced OER activity under alkaline and near-neutral conditions. Inorg Chem 58(3):1895–1904PubMedGoogle Scholar
  30. 30.
    Zhang Q, Zhang S, Tian Y, Zhan S (2018) Ce-directed double-layered Nanosheet architecture of NiFe-based hydroxide as highly efficient water oxidation Electrocatalyst. ACS Sustain Chem Eng 6(11):15411–15418Google Scholar
  31. 31.
    Feng J-X, Ye S-H, Xu H, Tong Y-X, Li G-R (2016) Design and synthesis of FeOOH/CeO2 Heterolayered nanotube Electrocatalysts for the oxygen evolution reaction. Adv Mater 28(23):4698–4703PubMedGoogle Scholar
  32. 32.
    Gao W, Xia Z, Cao F, Ho JC, Jiang Z, Qu Y (2018) Comprehensive understanding of the spatial configurations of CeO2 in NiO for the Electrocatalytic oxygen evolution reaction: embedded or surface-loaded. Adv Funct Mater 28(11):1706056Google Scholar
  33. 33.
    Yan Z, Sun H, Chen X, Liu H, Zhao Y, Li H, Xie W, Cheng F, Chen J (2018) Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution. Nat Commun 9:2373PubMedPubMedCentralGoogle Scholar
  34. 34.
    Kim J-H, Shin K, Kawashima K, Youn DH, Lin J, Hong TE, Liu Y, Wygant BR, Wang J, Henkelman G, Mullins CB (2018) Enhanced activity promoted by CeOx on a CoOx electrocatalyst for the oxygen evolution reaction. ACS Catal 8(5):4257–4265Google Scholar
  35. 35.
    Zheng Y-R, Gao M-R, Gao Q, Li H-H, Xu J, Wu Z-Y, Yu S-H (2015) An efficient CeO2/CoSe2 Nanobelt composite for electrochemical water oxidation. Small 11(2):182–188PubMedGoogle Scholar
  36. 36.
    Xu S, Lv C, He T, Huang Z, Zhang C (2019) Amorphous film of cerium doped cobalt oxide as a highly efficient electrocatalyst for oxygen evolution reaction. J Mater Chem A 7(13):7526–7532Google Scholar
  37. 37.
    Zhao D, Pi Y, Shao Q, Feng Y, Zhang Y, Huang X (2018) Enhancing oxygen evolution Electrocatalysis via the intimate hydroxide-oxide Interface. ACS Nano 12(6):6245–6251PubMedGoogle Scholar
  38. 38.
    Lv C, Huang Z, Yang Q, Wei G, Chen Z, Humphrey MG, Zhang C (2017) Ultrafast synthesis of molybdenum carbide nanoparticles for efficient hydrogen generation. J Mater Chem A 5(43):22805–22812Google Scholar
  39. 39.
    Lv C, Yang Q, Huang Q, Huang Z, Xia H, Zhang C (2016) Phosphorus doped single wall carbon nanotubes loaded with nanoparticles of iron phosphide and iron carbide for efficient hydrogen evolution. J Mater Chem A 4(34):13336–13343Google Scholar
  40. 40.
    Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110(11):6446–6473PubMedGoogle Scholar
  41. 41.
    Chen J, Zhao G, Chen Y, Rui K, Mao H, Dou SX, Sun W (2019) Iron-doped nickel Molybdate with enhanced oxygen evolution kinetics. Chem Eur J 25(1):280–284PubMedGoogle Scholar
  42. 42.
    Wang J, Ji L, Chen Z (2016) In situ rapid formation of a nickel-Iron-based Electrocatalyst for water oxidation. ACS Catal 6(10):6987–6992Google Scholar
  43. 43.
    Zou Z, Wang X, Huang J, Wu Z, Gao F (2019) An Fe-doped nickel selenide nanorod/nanosheet hierarchical array for efficient overall water splitting. J Mater Chem A 7(5):2233–2241Google Scholar
  44. 44.
    Yang H, Wang C, Zhang Y, Wang Q (2019) Green synthesis of NiFe LDH/Ni foam at room temperature for highly efficient electrocatalytic oxygen evolution reaction. Sci China Mater 62(5):681–689Google Scholar
  45. 45.
    Wang X, Zhang H, Lin H, Gupta S, Wang C, Tao Z, Fu H, Wang T, Zheng J, Wu G, Li X (2016) Directly converting Fe-doped metal–organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid. Nano Energy 25:110–119Google Scholar
  46. 46.
    Zhu W, Zhang T, Zhang Y, Yue Z, Li Y, Wang R, Ji Y, Sun X, Wang J (2019) A practical-oriented NiFe-based water-oxidation catalyst enabled by ambient redox and hydrolysis co-precipitation strategy. Appl Catal B Environ 244:844–852Google Scholar
  47. 47.
    Chen H, Zhao Q, Gao L, Ran J, Hou Y (2019) Water-plasma assisted synthesis of oxygen-enriched Ni-Fe layered double hydroxide Nanosheets for efficient oxygen evolution reaction. ACS Sustain Chem Eng 7(4):4247–4254Google Scholar
  48. 48.
    Xu HJ, Wang BK, Shan CF, Xi PX, Liu WS, Tang Y (2018) Ce-doped NiFe-layered double hydroxide ultrathin nanosheets/nanocarbon hierarchical nanocomposite as an efficient oxygen evolution catalyst. ACS Appl Mater Interfaces 10(7):6336–6345PubMedGoogle Scholar
  49. 49.
    Bao J, Zhang X, Fan B, Zhang J, Zhou M, Yang W, Hu X, Wang H, Pan B, Xie Y (2015) Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew Chem Int Ed 54(25):7399–7404Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jinhua Cai
    • 1
  • Jiangen Huang
    • 1
  • Shichen Xu
    • 2
  • Ling Yuan
    • 2
  • Xueren Huang
    • 3
  • Zhipeng Huang
    • 2
    Email author
  • Chi Zhang
    • 2
  1. 1.College of Chemistry & Chemical EngineeringJinggangshan UniversityJianPeople’s Republic of China
  2. 2.School of Chemical Science and EngineeringTongji UniversityShanghaiPeople’s Republic of China
  3. 3.College of Petroleum and Chemical EngineeringBeibuwan UniversityQinzhouPeople’s Republic of China

Personalised recommendations