Oxygen reduction reaction mechanism and kinetics on M-NxCy and M@N-C active sites present in model M-N-C catalysts under alkaline and acidic conditions

  • Ricardo Sgarbi
  • Kavita Kumar
  • Frédéric JaouenEmail author
  • Andrea Zitolo
  • Edson A. Ticianelli
  • Frédéric MaillardEmail author
Original Paper


M-N-C electrocatalysts (where M is Fe or Co) have been investigated for mitigating the dependence on noble metals when catalyzing the oxygen reduction reaction (ORR) for fuel cell technologies in acidic or alkaline conditions. Rotating disk and rotating ring-disk electrode measurements for Fe-N-C and Co-N-C catalysts demonstrate promising performances and stability for the ORR, while the activity of main suspected active sites (M-NxCy and M@N-C) has been discussed on the basis of the known physical-chemical properties of the catalysts in acid and alkaline media. Thereupon, it is observed that atomically dispersed Fe-NxCy sites reach the highest ORR activity in acid media when amplified by an adequate energy binding between the metallic center and the oxygenated reaction intermediates. In contrast, Fe@N-C core-shell sites reach a maximum ORR mass activity in alkaline media through a synergistic effect involving catalyst particles with metallic iron in the core and nitrogen-doped carbon in the shell.


Graphical Abstract


Fe-N-C catalyst Co-N-C catalyst PGM-free catalysts Alkaline exchange membrane fuel cell Proton exchange membrane fuel cell 



The Synchrotron SOLEIL (Gif-sur Yvette, France) is acknowledged for provision of synchrotron radiation facilities at beamline SAMBA (Proposal No. 20171318). We also acknowledge Qingying Jia (Northeastern University, Boston, USA) for providing the EXAFS spectrum of Fe3C.

Funding information

This study was financially supported by the French National Research Agency through the CAT2CAT and ANIMA projects, the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil (process number: 1614344), CAPES/COFECUB program (process numbers: 88887-187755/2018-00 and Ph-C 914/18), and the São Paulo State Research Foundation (FAPESP – process number: 2013/16930-7).

Supplementary material

10008_2019_4436_MOESM1_ESM.docx (145 kb)
ESM 1 (DOCX 145 kb)


  1. 1.
    Shao M, Chang Q, Dodelet J-P, Chenitz R (2016) Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev 116(6):3594–3657PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Lopes T, Kucernak A, Malko D, Ticianelli EA (2016) Mechanistic insights into the oxygen reduction reaction on metal–N–C electrocatalysts under fuel cell conditions. ChemElectroChem 3:1580–1590CrossRefGoogle Scholar
  3. 3.
    Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ 56:9–35CrossRefGoogle Scholar
  4. 4.
    Serov A, Zenyuk IV, Arges CG, Chatenet M (2018) Hot topics in alkaline exchange membrane fuel cells. J Power Sources 375:149–157CrossRefGoogle Scholar
  5. 5.
    Li J, Alsudairi A, Ma ZF, Mukerjee S, Jia Q (2017) Asymmetric volcano trend in oxygen reduction activity of Pt and non-Pt catalysts: in situ identification of the site-blocking effect. J Am Chem Soc 139(4):1384–1387PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Strateg Anal Inc. Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications : 2013 Update (2013) US Department of Energy, Washington. .
  7. 7.
    Li J, Ghoshal S, Liang W et al (2016) Structural and mechanistic basis for the high activity of Fe-N-C catalysts toward oxygen reduction. Energy Environ Sci 9:2418–2432CrossRefGoogle Scholar
  8. 8.
    do Rêgo UA, Lopes T, Bott-Neto JL et al (2019) Non-noble Fe-Nx/C electrocatalysts on tungsten carbides/N-doped carbons for the oxygen reduction reaction. Electrocatalysis 10:134–148CrossRefGoogle Scholar
  9. 9.
    do Rêgo UA, Lopes T, Bott-Neto JL et al (2018) Oxygen reduction electrocatalysis on transition metal-nitrogen modified tungsten carbide nanomaterials. J Electroanal Chem 810:222–231CrossRefGoogle Scholar
  10. 10.
    Zhong G, Wang H, Yu H, Peng F (2015) Nitrogen doped carbon nanotubes with encapsulated ferric carbide as excellent electrocatalyst for oxygen reduction reaction in acid and alkaline media. J Power Sources 286:495–503CrossRefGoogle Scholar
  11. 11.
    Brocato S, Serov A, Atanassov P (2013) pH dependence of catalytic activity for ORR of the non-PGM catalyst derived from heat-treated Fe-phenanthroline. Electrochim Acta 87:361–365CrossRefGoogle Scholar
  12. 12.
    Meng H, Jaouen F, Proietti E et al (2009) pH-effect on oxygen reduction activity of Fe-based electro-catalysts. Electrochem Commun 11:1986–1989CrossRefGoogle Scholar
  13. 13.
    Elumeeva K, Ren J, Antonietti M, Fellinger TP (2015) High surface iron/cobalt-containing nitrogen-doped carbon aerogels as non-precious advanced electrocatalysts for oxygen reduction. ChemElectroChem 2:584–591CrossRefGoogle Scholar
  14. 14.
    Rojas-Carbonell S, Artyushkova K, Serov A et al (2018) Effect of pH on the activity of platinum group metal-free catalysts in oxygen reduction reaction. ACS Catal 8:3041–3053CrossRefGoogle Scholar
  15. 15.
    Ge X, Sumboja A, Wuu D et al (2015) Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts. ACS Catal 5:4643–4667CrossRefGoogle Scholar
  16. 16.
    Ramaswamy N, Mukerjee S (2011) Influence of inner- and outer-sphere electron transfer mechanisms during electrocatalysis of oxygen reduction in alkaline media. J Phys Chem C 115:18015–18026CrossRefGoogle Scholar
  17. 17.
    Ramaswamy N, Tylus U, Jia Q, Mukerjee S (2013) Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: linking surface science to coordination chemistry. J Am Chem Soc 135(41):15443–15449PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Jia Q, Ramaswamy N, Hafiz H, Tylus U, Strickland K, Wu G, Barbiellini B, Bansil A, Holby EF, Zelenay P, Mukerjee S (2015) Experimental observation of redox-induced Fe-N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 9(12):12496–12505PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Zhong L, Frandsen C, Mørup S et al (2018) 57Fe-Mössbauer spectroscopy and electrochemical activities of graphitic layer encapsulated iron electrocatalysts for the oxygen reduction reaction. Appl Catal B Environ 221:406–412CrossRefGoogle Scholar
  20. 20.
    Singh SK, Takeyasu K, Nakamura J (2018) Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials. Adv Mater 1804297:1–17Google Scholar
  21. 21.
    Zagal JH, Koper MTM (2016) Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction. Angew Chem Int Ed 55:14510–14521CrossRefGoogle Scholar
  22. 22.
    Wu G, More KL, Johnston CM, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332(80):443–447PubMedCrossRefGoogle Scholar
  23. 23.
    Chen Z, Dodelet JP, Zhang J (eds) (2014) Non-noble metal fuel cell catalysts. Wiley, New YorkGoogle Scholar
  24. 24.
    Ranjbar-Sahraie N, Zitolo A, Fonda E et al (2017) Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction. Nat Commun 8:1–10CrossRefGoogle Scholar
  25. 25.
    Subramanian P, Mohan R, Schechter A (2017) Unraveling the oxygen-reduction sites in graphitic-carbon Co–N–C-type electrocatalysts prepared by single-precursor pyrolysis. ChemCatChem 9:1969–1978CrossRefGoogle Scholar
  26. 26.
    Perkas N, Schechter A, Gedanken A et al (2017) Electrochemical oxygen reduction activity of metal embedded nitrogen doped carbon nanostructures derived from pyrolysis of nitrogen-rich guanidinium salt. J Electrochem Soc 164:F781–F789CrossRefGoogle Scholar
  27. 27.
    Dodelet JP, Chenitz R, Yang L, Lefèvre M (2014) A new catalytic site for the electroreduction of oxygen? ChemCatChem 6:1866–1867CrossRefGoogle Scholar
  28. 28.
    Strickland K, Miner E, Jia Q et al (2015) Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination. Nat Commun 6:1–8CrossRefGoogle Scholar
  29. 29.
    Varnell JA, Tse ECM, Schulz CE et al (2016) Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts. Nat Commun 7:1–9CrossRefGoogle Scholar
  30. 30.
    Kumar K, Gairola P, Lions M, Ranjbar-Sahraie N et al (2018) Physical and chemical considerations for improving catalytic activity and stability of non-precious-metal oxygen reduction reaction catalysts. ACS Catal 8:11264–11276CrossRefGoogle Scholar
  31. 31.
    Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ (2001) Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J Electroanal Chem 495:134–145CrossRefGoogle Scholar
  32. 32.
    Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12(Pt 4):537–541CrossRefGoogle Scholar
  33. 33.
    Zitolo A, Goellner V, Armel V, Sougrati MT, Mineva T, Stievano L, Fonda E, Jaouen F (2015) Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat Mater 14(9):937–942PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Yuan K, Sfaelou S, Qiu M et al (2018) Synergetic contribution of boron and Fe-Nx species in porous carbons toward efficient electrocatalysts for oxygen reduction reaction. ACS Energy Lett 3:252–260CrossRefGoogle Scholar
  35. 35.
    Raymundo-Piñero E, Kierzek K, Machnikowski J, Béguin F (2006) Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44:2498–2507CrossRefGoogle Scholar
  36. 36.
    Cowling RD, Riddiford AC (1969) The anodic behaviour of cobalt in alkaline solutions. Electrochim Acta 14:981–989CrossRefGoogle Scholar
  37. 37.
    Favaro M, Yang J, Nappini S, Magnano E, Toma FM, Crumlin EJ, Yano J, Sharp ID (2017) Understanding the oxygen evolution reaction mechanism on CoOx using operando ambient-pressure X-ray photoelectron spectroscopy. J Am Chem Soc 139(26):8960–8970PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Zúñiga C, Candia-Onfray C, Venegas R et al (2019) Elucidating the mechanism of the oxygen reduction reaction for pyrolyzed Fe-N-C catalysts in basic media. Electrochem Commun 102:78–82CrossRefGoogle Scholar
  39. 39.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New YorkGoogle Scholar
  40. 40.
    Ramaswamy N, Mukerjee S (2012) Fundamental mechanistic understanding of zlectrocatalysis of oxygen reduction on Pt and non-Pt surfaces: acid versus alkaline media. Adv Phys Chem 2012:1–17CrossRefGoogle Scholar
  41. 41.
    Tylus U, Jia Q, Strickland K et al (2014) Elucidating oxygen reduction active sites in pyrolyzed metal-nitrogen coordinated non-precious-metal electrocatalyst systems. J Phys Chem C 118:8999–9008CrossRefGoogle Scholar
  42. 42.
    Pérez-Rodríguez S, Torres D, Lázaro MJ (2018) Effect of oxygen and structural properties on the electrical conductivity of powders of nanostructured carbon materials. Powder Technol 340:380–388CrossRefGoogle Scholar
  43. 43.
    Deng D, Yu L, Chen X et al (2013) Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew Chem Int Ed 52:371–375CrossRefGoogle Scholar
  44. 44.
    Zhu J, Xiao M, Liu C et al (2015) Growth mechanism and active site probing of Fe3C@N-doped carbon nanotubes/C catalysts: guidance for building highly efficient oxygen reduction electrocatalysts. J Mater Chem A 3:21451–21459CrossRefGoogle Scholar
  45. 45.
    Watanabe M (1991) Design of alloy electrocatalysts for CO2 reduction. J Electrochem Soc 138:3382CrossRefGoogle Scholar
  46. 46.
    Hu Y, Jensen JO, Zhang W et al (2014) Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts. Angew Chem Int Ed 53:3675–3679CrossRefGoogle Scholar
  47. 47.
    Anderson AB, Sidik RA (2004) Oxygen electroreduction on FeII and FeIII coordinated to N4 chelates. Reversible potentials for the intermediate steps from quantum theory. J Phys Chem B 108:5031–5035CrossRefGoogle Scholar
  48. 48.
    Yi Y, Weinberg G, Prenzel M et al (2017) Electrochemical corrosion of a glassy carbon electrode. Catal Today 295:32–40CrossRefGoogle Scholar
  49. 49.
    Freitas KS, Concha BM, Ticianelli EA, Chatenet M (2011) Mass transport effects in the borohydride oxidation reaction - influence of the residence time on the reaction onset and faradaic efficiency. Catal Today 170:110–119CrossRefGoogle Scholar
  50. 50.
    Schneider A, Colmenares L, Seidel YE, Jusys Z, Wickman B, Kasemo B, Behm RJ (2008) Transport effects in the oxygen reduction reaction on nanostructured, planar glassy carbon supported Pt/GC model electrodes. Phys Chem Chem Phys 10(14):1931–1943PubMedCrossRefGoogle Scholar
  51. 51.
    Serov A, Artyushkova K, Andersen NI et al (2015) Original mechanochemical synthesis of non-platinum group metals oxygen reduction reaction catalysts assisted by sacrificial support method. Electrochim Acta 179:154–160CrossRefGoogle Scholar
  52. 52.
    Goellner V, Armel V, Zitolo A et al (2015) Degradation by hydrogen peroxide of metal-nitrogen-carbon catalysts for oxygen reduction. J Electrochem Soc 162:H403–H414CrossRefGoogle Scholar
  53. 53.
    Osmieri L, Monteverde Videla AHA, Armandi M, Specchia S (2016) Influence of different transition metals on the properties of Me–N–C (Me = Fe, Co, Cu, Zn) catalysts synthesized using SBA-15 as tubular nano-silica reactor for oxygen reduction reaction. Int J Hydrog Energy 41:22570–22588CrossRefGoogle Scholar
  54. 54.
    Osmieri L, Monteverde Videla AHA, Ocón P, Specchia S (2017) Kinetics of oxygen electroreduction on Me-N-C (Me = Fe, Co, Cu) catalysts in acidic medium: insights on the effect of the transition metal. J Phys Chem C 121:17796–17817CrossRefGoogle Scholar
  55. 55.
    Chen R, Li H, Chu D, Wang G (2009) Unraveling oxygen reduction reaction mechanisms on carbon-supported Fe-phthalocyanine and Co-phthalocyanine catalysts in alkaline solutions. J Phys Chem C 113:20689–20697CrossRefGoogle Scholar
  56. 56.
    Goenaga GA, Roy AL, Cantillo NM et al (2018) A family of platinum group metal-free catalysts for oxygen reduction in alkaline media. J Power Sources 395:148–157CrossRefGoogle Scholar
  57. 57.
    Chlistunoff J (2011) RRDE and voltammetric study of ORR on pyrolyzed Fe/polyaniline catalyst. On the origins of variable Tafel slopes. J Phys Chem C 115:6496–6507CrossRefGoogle Scholar
  58. 58.
    Santori PG, Speck FD, Li J et al (2019) Effect of pyrolysis atmosphere and electrolyte pH on the oxygen reduction activity, stability and spectroscopic signature of FeNx moieties in Fe-N-C catalysts. J Electrochem Soc 166:F3311–F3320CrossRefGoogle Scholar
  59. 59.
    Lee JS, Park GS, Kim ST et al (2013) A highly efficient electrocatalyst for the oxygen reduction reaction: N-doped Ketjenblack incorporated into Fe/Fe3C-functionalized melamine foam. Angew Chem Int Ed 52:1026–1030CrossRefGoogle Scholar
  60. 60.
    Kim JH, Sa YJ, Jeong HY, Joo SH (2017) Roles of Fe−Nx and Fe−Fe3C@C species in Fe−N/C electrocatalysts for oxygen reduction reaction. ACS Appl Mater Interfaces 9(11):9567–9575PubMedCrossRefGoogle Scholar
  61. 61.
    Gokhale R, Chen Y, Serov A et al (2016) Direct synthesis of platinum group metal-free Fe-N-C catalyst for oxygen reduction reaction in alkaline media. Electrochem Commun 72:140–143CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Química de São CarlosUniversidade de São PauloSao CarlosBrazil
  2. 2.Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMIGrenobleFrance
  3. 3.CNRS, Université de Montpellier, ENSCMUMR 5253 Institut Charles Gerhardt MontpellierMontpellierFrance
  4. 4.Synchrotron SOLEIL, L’orme des MerisiersGif-sur-YvetteFrance

Personalised recommendations