Journal of Solid State Electrochemistry

, Volume 23, Issue 12, pp 3419–3428 | Cite as

Three-dimensional ZnS/reduced graphene oxide/polypyrrole composite for high-performance supercapacitors and lithium-ion battery electrode material

  • Zichen Xu
  • Zhiqiang Zhang
  • Mingyu Li
  • Huiling Yin
  • Hongtao LinEmail author
  • Jin Zhou
  • Shuping Zhuo
Original Paper


In this work, three-dimensional ZnS/reduced graphene oxide/polypyrrole ternary composites were synthesized. The as-prepared composites are investigated as electrode materials for supercapacitors and lithium-ion batteries. For the application of supercapacitor in three electrode system, its discharge specific capacitance and energy density at 1 A/g are 1175.8 F/g and 80.0 Wh/kg after 5000 cycles, respectively. Meanwhile, its cycle stability at 1 A/g is up to 151% during 5000 loops. For the application of lithium-ion battery, its discharge specific capacitance and energy density at 100 mA/g can be up to 1446.9 mAh/g and 955.6 Wh/kg after 200 cycles, respectively. The cycle stability of the ternary composite is up to 157% at 100 mA/g during 200 loops. The excellent electrochemical performance of the composites could be ascribed to the three-dimensional structure which facilitates the penetration of the electrolyte and the insertion/extraction process of Li+ and the synergistic effect between organic and inorganic materials. The results indicate that the ZnS/reduced graphene oxide/polypyrrole composite are promising electrode materials for high-performance supercapacitors and lithium-ion batteries.


Funding information

This work was supported by the National Natural Science Foundation of China (Nos. 21403130; 21403129; 21576158), the Natural Science Foundation of Shandong Province (ZR2014BQ028, 2015ZRB01765).

Supplementary material

10008_2019_4434_MOESM1_ESM.docx (4 mb)
ESM 1(DOCX 4120 kb)


  1. 1.
    Winter M, Brodd RJ (2014) Chem Rev 104:4245–4270Google Scholar
  2. 2.
    Najib S, Erdem E (2019) Nanoscale Adv 1:2817–2827Google Scholar
  3. 3.
    Du Pasquier A, Plitz I, Menocal S, Amatucci G (2013) J Power Sources 115:171–178Google Scholar
  4. 4.
    Costentin C, Porter TR, Savéant JM (2017) ACS Appl Mater Interfaces 9(10):8649–8658PubMedGoogle Scholar
  5. 5.
    Wang H, Dai H (2013) Chem Soc Rev 42(7):3088–3113PubMedGoogle Scholar
  6. 6.
    Zhou J, Qiu Z, Si W, Cui H, Zhuo S (2015) Electrochim Acta 180:1007–1013Google Scholar
  7. 7.
    Zhou W, Cheng C, Liu J, Tay YY, Jiang J, Jia X, Zhang J, Gong H, Hung HH, Yu T, Fan HJ (2011) Adv Funct Mater 21:2439–2445Google Scholar
  8. 8.
    Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Energy Environ Sci 4:3243–3262Google Scholar
  9. 9.
    Li J, Xie H (2012) Mater Lett 78:106–109Google Scholar
  10. 10.
    Genc R, Alas MO, Harputlu E, Repp S, Kremer N, Castellano M, Colak SG, Ocakoglu K, Erdem E (2017) Sci Rep 7(1):11222PubMedPubMedCentralGoogle Scholar
  11. 11.
    Qiu Z, Wang Y, Bi X, Zhou T, Zhou J, Zhao J, Miao Z, Yi W, Fu P, Zhuo S (2018) J Power Sources 376:82–90Google Scholar
  12. 12.
    Mondal AK, Liu H, Li ZF, Wang G (2016) Electrochim Acta:190346–190353Google Scholar
  13. 13.
    Li B, Dai F, Xiao Q, Yang L, Shen J, Zhang C, Cai M (2016) Adv Energy Mater 6:1600802Google Scholar
  14. 14.
    Li H, Tao Y, Zheng X, Luo J, Kang F, Cheng HM, Yang QH (2016) Energy Environ Sci 9:3135–3142Google Scholar
  15. 15.
    Niu J, Shao R, Liang J, Dou M, Li Z, Huang Y, Wang F (2017) Nano Energy 36:322–330Google Scholar
  16. 16.
    Wang T, Hu P, Zhang C, Du H, Zhang Z, Wang X, Chen S, Xiong J, Cui G (2016) ACS Appl Mater Interfaces 8(12):7811–7817PubMedGoogle Scholar
  17. 17.
    Seo JW, Jang JT, Park SW, Kim C, Park B, Cheon J (2008) Adv Mater 20:4269–4273Google Scholar
  18. 18.
    Li X, Zhang C, Xin S, Yang Z, Li Y, Zhang D, Yao P (2016) ACS Appl Mater Interfaces 8(33):21373–21380PubMedGoogle Scholar
  19. 19.
    Mao M, Jiang L, Wu L, Zhang M, Wang T (2015) J Mater Chem A 3:13384–13389Google Scholar
  20. 20.
    Repp S, Harputlu E, Gurgen S, Castellano M, Kremer N, Pompe N, Wörner J, Hoffmann A, Thomann R, Emen FM, Weber S, Ocakoglu K, Erdem E (2018) Nanoscale 10(4):1877–1884PubMedGoogle Scholar
  21. 21.
    Ma Y, Chang H, Zhang M, Chen Y (2015) Adv Mater 27:5296–5308PubMedGoogle Scholar
  22. 22.
    Ma W, Chen S, Yang S, Chen W, Weng W, Cheng Y, Zhu M (2017) Carbon 113:151–158Google Scholar
  23. 23.
    Tan Y, Liang M, Lou P, Cui Z, Guo X, Sun W, Yu X (2016) ACS Appl Mater Interfaces 8(23):14488–14493PubMedGoogle Scholar
  24. 24.
    Heydari H, Moosavifard SE, Elyasi S, Shahraki M (2017) Appl Surf Sci 394:425–430Google Scholar
  25. 25.
    Chang K, Wang Z, Huang G, Li H, Chen W, Lee JY (2012) J Power Sources 201:259–266Google Scholar
  26. 26.
    Jiang Y, Guo Y, Lu W, Feng Z, Xi B, Kai S, Zhang J, Feng J, Xiong S (2017) ACS Appl Mater Interfaces 9(33):27697–27706PubMedGoogle Scholar
  27. 27.
    Xue L, Shen C, Zheng M, Lu H, Li N, Ji G, Pan L, Cao J (2011) Mater Lett 65:198–200Google Scholar
  28. 28.
    Li Y, Liu Y, Shen W, Yang Y, Wen Y, Wang M (2011) Mater Lett 65:2518–2521Google Scholar
  29. 29.
    Zhang Y, Chen Z, Zhang D, Zhao Y, Wu P, Wang F (2018) Mater Lett 227:158–160Google Scholar
  30. 30.
    Alas MO, Güngör A, Genc R, Erdem E (2019) Nanoscale 11(27):12804–12816PubMedGoogle Scholar
  31. 31.
    Holzwarth U, Gibson N (2011) Nat Nanotechnol 6:534PubMedGoogle Scholar
  32. 32.
    Fang Y, Jiang X, Niu L, Wang S (2017) Mater Lett 190:232–235Google Scholar
  33. 33.
    Kashani H, Chen L, Ito Y, Han J, Hirata A, Chen M (2016) Nano Energy 19:391–400Google Scholar
  34. 34.
    Yang D, Bock C (2017) J Power Sources 337:73–81Google Scholar
  35. 35.
    Wang W, Li GC, Wang Q, Li GR, Ye SH, Gao XP (2013) J Electrochem Soc 160:A805–A810Google Scholar
  36. 36.
    Thangavel S, Krishnamoorthy K, Kim SJ, Venugopal G (2016) J Alloys Compd 683:456–462Google Scholar
  37. 37.
    Xie D, Wang DH, Tang WJ, Xia XH, Zhang YJ, Wang XL, Gu CD, Tu JP (2016) J Power Sources 307:510–518Google Scholar
  38. 38.
    Prasankumar T, Karazhanov S, Jose SP (2018) Mater Lett 221:179–182Google Scholar
  39. 39.
    Lim YS, Tan YP, Lim HN, Huang NM, Tan WT, Yarmo MA, Yin CY (2014) Ceram Int 40:3855–3864Google Scholar
  40. 40.
    Atikah Md Jani N, Aidil Ibrahim M, Ishak Tunku Kudin T, Malik Marwan Ali A, Osman H, Hasdinor Hassan O (2017) Mater Today Proc 4:5138–5145Google Scholar
  41. 41.
    Ramachandran R, Saranya M, Kollu P, Raghupathy BPC, Jeong SK, Grace AN (2015) Electrochim Acta 178:647–657Google Scholar
  42. 42.
    Purty B, Choudhary RB, Biswas A, Udayabhanu G (2018) Mater Chem Phys 216:213–222Google Scholar
  43. 43.
    Chee WK, Lim HN, Harrison I, Chong KF, Zainal Z, Ng CH, Huang NM (2015) Electrochim Acta 157:88–94Google Scholar
  44. 44.
    Zhang F, Zhang T, Yang X, Zhang L, Leng K, Huang Y, Chen Y (2013) Energy Environ Sci 6:1623–1632Google Scholar
  45. 45.
    Lee H, Kim H, Cho MS, Choi J, Lee Y (2011) Electrochim Acta 56:7460–7466Google Scholar
  46. 46.
    Zhang D, Zhang X, Chen Y, Yu P, Wang C, Ma Y (2011) J Power Sources 196:5990–5996Google Scholar
  47. 47.
    Xu Z, Zhang Z, Gao L, Lin H, Xue L, Zhou Z, Zhou J, Zhuo S (2018) RSC Adv 8:40252–40260Google Scholar
  48. 48.
    Zhang Y, Zhao Y, Konarov A, Gosselink D, Soboleski HG, Chen P (2013) J Power Sources 241:517–521Google Scholar
  49. 49.
    Chang K, Geng D, Li X, Yang J, Tang Y, Cai M, Li R, Sun X (2013) Adv Energy Mater 3(7):839–844Google Scholar
  50. 50.
    Kundu D, Krumeich F, Nesper R (2013) J Power Sources 236:112–117Google Scholar
  51. 51.
    Yang Y, Wang C, Yue B, Gambhir S, Too CO, Wallace GG (2012) Adv Energy Mater 2:266–272Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zichen Xu
    • 1
  • Zhiqiang Zhang
    • 1
  • Mingyu Li
    • 1
  • Huiling Yin
    • 1
  • Hongtao Lin
    • 1
    Email author
  • Jin Zhou
    • 1
  • Shuping Zhuo
    • 1
  1. 1.School of Chemistry and Chemical EngineeringShandong University of TechnologyZiboPeople’s Republic of China

Personalised recommendations