Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 11, pp 3145–3151 | Cite as

Li metal-free rechargeable all-solid-state Li2S/Si battery based on Li7P3S11 electrolyte

  • Xiaoyan Xu
  • Jun Cheng
  • Yuanyuan Li
  • Xiangkun Nie
  • Linna Dai
  • Lijie CiEmail author
Original Paper
  • 131 Downloads

Abstract

As high energy density and enhanced safety are required for the lithium-ion battery development, all-solid-state battery has attracted significant attention. Herein, we report an all-solid-state full battery consisting of a Li7P3S11 solid electrolyte coated silicon anode, Li2S/graphene composite cathode, and Li7P3S11 solid-state electrolyte. With a high capacity for the silicon anode and Li2S cathode, this battery yields a high theoretical specific energy density up to 1495 Wh kg−1, which is higher than that of lithium-ion batteries based on oxide cathodes. Moreover, Li2S cathode is used as lithium source instead of using metallic lithium, avoiding interface reaction between lithium metal anode and sulfide electrolyte Li7P3S11. This all-solid-state battery system we proposed could avoid the safety issues associated with the use of lithium metal and be a promising candidate for an enhanced energy density, which would promote their applications in the fields of electric vehicles and portable electronics.

Keywords

All-solid-state batteries Li7P3S11 electrolyte Li2S cathode, Si anode Interfacial compatibility 

Notes

Funding information

The authors acknowledge funding support from 1000 Talent Plan program (NO. 31370086963030), research projects from Shandong Province (2018JMRH0211, 2017CXGC1010, and 2016GGX104001), Taishan Scholar Program (11370085961006), the National Science Foundation of Shandong Province (ZR2017MEM002), and the Fundamental Research Funds of Shandong University (201810422046, 2017JC010, 2017JC042, and 2016JC005).

Supplementary material

10008_2019_4409_MOESM1_ESM.docx (96 kb)
ESM 1 (DOCX 95 kb)

References

  1. 1.
    Falco M, Castro L, Nair J, Bella F, Bardé F, Meligrana G, Gerbaldi C (2019) UV-cross-linked composite polymer electrolyte for high-rate, ambient temperature lithium batteries. ACS Applied Energy Mater 2(3):1600–1607Google Scholar
  2. 2.
    Nair R, Colò F, Kazzazi A, Moreno M, Bresser D, Lin R, Bella F, Meligrana G, Fantinie S, Simonettid E, Appetecchid G, Passerini S, Gerbaldia C, Appetecchi B (2019) Room temperature ionic liquid (RTIL)-based electrolyte cocktails for safe, high working potential Li-based polymer batteries. J Power Sources 412:398–407Google Scholar
  3. 3.
    Radzir M, Hanifah S, Ahmad A, Hassan N, Bella F (2015) Effect of lithium bis (trifluoromethylsulfonyl) imide salt-doped UV-cured glycidyl methacrylate. J Solid State Electrochem 19(10):3079–3085Google Scholar
  4. 4.
    Yang Q, Li W, Dong C, Ma Y, Yin Y, Wu Q, Xu Z, Ma W, Fan C, Sun K (2020) PIM-1 as an artificial solid electrolyte interphase for stable lithium metal anode in high-performance batteries. J Energy Chem 42:83–90Google Scholar
  5. 5.
    Kwak W, Park J (2019) Cathode coating using LiInO2-LiI composite for stable sulfide-based all-solid-state batteries. Sci Rep 9(1):8099PubMedPubMedCentralGoogle Scholar
  6. 6.
    Ma J, Chen B, Wang L, Wang L, Cui G (2018) Progress and prospect on failure mechanisms of solid-state lithium batteries. J Power Sources 392:94–115Google Scholar
  7. 7.
    Zhang J, Zhao J, Yue L, Wang Q, Chai J, Liu Z, Zhou X, Li H, Guo Y, Cui G, Chen L (2015) Safety-reinforced poly (propylene carbonate)-based All-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries. Adv Energy Mater 5(24):1501082Google Scholar
  8. 8.
    Zhang J, Zheng C, Lou J, Xia Y, Liang C, Huang H, Zhang W (2019) Poly (ethylene oxide) reinforced Li6PS5Cl composite solid electrolyte for all-solid-state lithium battery: enhanced electrochemical performance, mechanical property and interfacial stability. J Power Sources 412:78–85Google Scholar
  9. 9.
    Wan Z, Lei D, Yang W, Liu C, Shi K, Hao X, Kang F (2019) All-solid-state batteries: low resistance–integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder. Adv Funct Mater 29(1):1970006Google Scholar
  10. 10.
    Yu X, Xue L, Goodenough JB, Manthiram A (2019) A high-performance all-solid-state sodium battery with a poly (ethylene oxide)-Na3Zr2Si2PO12 composite electrolyte. ACS Mater Lett 1:132–138Google Scholar
  11. 11.
    Anastro A, Lago N, Berlanga C, Galcerán M, Hilder M, Forsyth M, Mecerreyes D (2019) Poly (ionic liquid) iongel membranes for all solid-state rechargeable sodium battery. J Membr Sci 582:435–441Google Scholar
  12. 12.
    Miura A, Rosero-Navarro NC, Sakuda A, Tadanaga K, Phuc N, Matsuda A, Tatsumisago M (2019) Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery. Nat Rev Chem 3:189–198Google Scholar
  13. 13.
    Kim K, Park J, Jeong G, Yu J, Kim Y, Park S, Kanno R (2019) Rational design of a composite electrode to realize a high-performance all-solid-state battery. ChemSusChem 12:2637–2643PubMedGoogle Scholar
  14. 14.
    Ates T, Keller M, Kulisch J, Adermann T, Passerini S (2019) Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte. Energy Storage Mater 17:204–210Google Scholar
  15. 15.
    Qu H, Ju J, Chen B, Xue N, Du H, Han X, Zhang J, Xu G, Yu Z, Wang X, Cui G (2018) Inorganic separators enable significantly suppressed polysulfide shuttling in high-performance lithium–sulfur batteries. J Mater Chem A 6(46):23720–23729Google Scholar
  16. 16.
    Suriyakumar S, Gopi S, Kathiresan M, Bose S, Gowd B, Nair R, Bose S, Angulakshmi N, Meligrana G, Gerbaldi G, Stephan M (2018) Metal organic framework laden poly (ethylene oxide) based composite electrolytes for all-solid-state Li-S and Li-metal polymer batteries. Electrochim Acta 285:355–364Google Scholar
  17. 17.
    Pan H, Huang X, Zhang R, Zhang T, Chen Y, Hoang T, Wen G (2018) Reduced graphene oxide-encapsulated mesoporous silica as sulfur host for lithium–sulfur battery. J Solid State Electrochem 22(11):3557–3568Google Scholar
  18. 18.
    Li L, Zhong B (2018) The design and preparation of the composite with layered spherical structure for Li-S battery. J Solid State Electrochem 22(2):591–598Google Scholar
  19. 19.
    Nara H, Tsuda S, Osaka T (2017) Techniques for realizing practical application of sulfur cathodes in future Li-ion batteries. J Solid State Electrochem 21(7):1925–1937Google Scholar
  20. 20.
    Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J (2017) Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33:363–386Google Scholar
  21. 21.
    Tian YS, Shi T, Richards W, Li JC, Kim J, Bo SH, Ceder G (2017) Compatibility issues between electrodes and electrolytes in solid-state batteries. Energy Environ Sci 10(5):1150–1166Google Scholar
  22. 22.
    Chen B, Ju J, Ma J, Zhang J, Xia R, Cui G, Chen L (2017) An insight into intrinsic interfacial properties between Li metals and Li10GeP2S12 solid electrolytes. Phys Chem Chem Phys 19(46):31436–31442PubMedGoogle Scholar
  23. 23.
    Zhong C, Deng Y, Hu W, Qiao L, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44(21):7484–7539PubMedGoogle Scholar
  24. 24.
    Manthiram A, Yu X, Wang S (2017) Lithium battery chemistries enabled by solid-state electrolytes. Nature Rev Mater 2(4):16103Google Scholar
  25. 25.
    Chien P, Feng X, Tang M, Rosenberg JT, Neill SO, Zheng J, Grant S, Hu Y (2018) Li Distribution heterogeneity in solid electrolyte Li10GeP2S12 upon electrochemical cycling probed by 7Li MRI. J Phys Chem Lett 9(8):1990–1998PubMedGoogle Scholar
  26. 26.
    Ban X, Zhang W, Chen N, Sun C (2018) A high-performance and durable poly (ethylene oxide)-based composite solid electrolyte for all solid-state lithium battery. J Phys Chem C 122(18):9852–9858Google Scholar
  27. 27.
    Zhang J, Zang X, Wen H, Dong T, Chai J, Li Y, Chen B, Zhao J, Dong S, Ma J, Yue L, Liu Z, Guo X, Cui G, Chen L (2017) High-voltage and free-standing poly (propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. J Mater Chem A 5(10):4940–4948Google Scholar
  28. 28.
    Wenzel S, Randau S, Leichtweiss T, Weber DA, Sann J, Zeier WG, Janek J (2016) Direct observation of the interfacial instability of the fast-ionic conductor Li10GeP2S12 at the lithium metal anode. Chem Mater 28(7):2400–2407Google Scholar
  29. 29.
    Hayashi A, Ohtsubo R, Ohtomo T, Mizuno F, Tatsumisago M (2016) All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material. J Power Sources 183(1):422–426Google Scholar
  30. 30.
    Shin B, Nam YJ, Oh DY, Kim DH, Kim J, Jung Y (2014) Comparative study of TiS2/Li-In all-solid-state lithium batteries using glass-ceramic Li3PS4 and Li10GeP2S12 solid electrolytes. Electrochim Acta 146:395–402Google Scholar
  31. 31.
    Zhang Z, Zhao Y, Chen S, Xie D, Yao X, Cui P, Xu X (2017) An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life. J Mater Chem A 5(32):16984–16993Google Scholar
  32. 32.
    Xu X, Hou G, Nie X, Ai Q, Liu Y, Feng J, Zhang L, Si P, Guo S, Ci L (2018) Li7P3S11/poly (ethylene oxide) hybrid solid electrolytes with excellent interfacial compatibility for all-solid-state batteries. J Power Sources 400:212–217Google Scholar
  33. 33.
    Xu X, Ai Q, Pan L, Ma X, Zhai W, An Y, Hou G, Chen J, Zhang L, Si P, Lou J, Feng J, Ci L (2018) Li7P3S11 solid electrolyte coating silicon for high-performance lithium-ion batteries. Electrochim Acta 276:325–332Google Scholar
  34. 34.
    Yao X, Liu D, Wang C, Long P, Peng G, Hu Y, Li H, Chen L, Xu X (2016) High-energy all-solid-state lithium batteries with ultralong cycle life. Nano Lett 16(11):7148–7154PubMedGoogle Scholar
  35. 35.
    Yang Y, McDowell MT, Jackson M, Cha JJ, Hong SS, Cui Y (2010) New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett 10(4):1486–1491PubMedGoogle Scholar
  36. 36.
    Lin Z, Liu Z, Dudney N, Liang C (2013) Lithium superionic sulfide cathode for all-solid lithium–sulfur batteries. ACS Nano 7(3):2829–2833PubMedGoogle Scholar
  37. 37.
    Wu FW, Kim H, Magasinski A, Lee JT, Lin HT, Yushin G (2014) Harnessing steric separation of freshly nucleated Li2S nanoparticles for bottom-up assembly of high-performance cathodes for lithium-sulfur and lithium-ion batteries. Adv Energy Mater 4(11):1400196Google Scholar
  38. 38.
    Cai K, Song M, Cairns E, Zhang Y (2012) Nanostructured Li2S–C composites as cathode material for high-energy lithium/sulfur batteries. Nano Lett 12(12):6474–6479PubMedGoogle Scholar
  39. 39.
    Yang T, Wang X, Wang D (2016) Facile and scalable synthesis of nanosized core–shell Li2S@ C composite for high-performance lithium–sulfur batteries. J Mater Chem A 4(42):16653–16660Google Scholar
  40. 40.
    Yu M, Wang Z, Wang Y, Dong Y, Qiu J (2017) Freestanding flexible Li2S paper electrode with high mass and capacity loading for high-energy Li–S batteries. Adv Energy Mater 7(17):1700018Google Scholar
  41. 41.
    Wan H, Pierre J, Qi X, Liu X, Xu X, Li H, Hu Y, Yao Y (2018) Core–Shell Fe1–xS@Na2.9PS3.95Se0.05 nanorods for room temperature all-solid-state sodium batteries with high energy density. ACS Nano 12(3):2809–2817PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiaoyan Xu
    • 1
    • 2
  • Jun Cheng
    • 1
  • Yuanyuan Li
    • 1
  • Xiangkun Nie
    • 1
  • Linna Dai
    • 1
  • Lijie Ci
    • 1
    Email author
  1. 1.SDU & Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and EngineeringShandong UniversityJinanChina
  2. 2.School of ScienceShandong Jiaotong UniversityJinanChina

Personalised recommendations