Synthesis of zirconium diboride and its application in the protection of  stainless steel surface in harsh environment

  • Krishna K. Yadav
  • Sujit Kumar Guchhait
  • Sunaina
  • Ankush
  • C. M. Hussain
  • Ashok K. GanguliEmail author
  • Menaka JhaEmail author
Original Paper


Surface degradation of steel is one of the key problems of steel end user because of the electrochemical reaction at the steel surface caused by atmospheric weather condition. The major problem with steel is its surface degradation because of the electrochemical reaction at the surface from the atmospheric weather condition. To address this issue, zirconium diboride anticorrosive film has been fabricated on stainless steel by the chemical process. The synthesis of ZrB2 (~ 150 nm) has been carried out at via reaction of ZrO2 nanoparticles (10 nm) with amorphous boron at 1200 °C under argon atmosphere. The scalable doctor blade technique has been employed for the fabrication of ZrB2 film. The electrochemical performance, viz linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) studies of ZrB2 on 304 grade stainless steel (SS), shows highly anticorrosive behaviour with excellent protection efficiency (up to 98% in acidic media) as compared to bare 304SS in neutral, acidic and alkaline media.

Graphical abstract

New chemical process of fabrication of ZrB2 anticorrosive film on steel substrate


ZrB2 Nanoparticles ZrB2/304SS Corrosion Electron microscopy 



All the authors thanks to DST and INST, and Mohali for providing the research facilities. Krishna, Sunaina and Ankush thanks CSIR-India for providing the fellowship to carry out their research work. SG thanks to the NTPC-Netra for providing the fellowship.

Supplementary material

10008_2019_4408_MOESM1_ESM.docx (1.6 mb)
ESM 1 (DOCX 1604 kb)


  1. 1.
    Sedriks A (1996) Corrosion of stainless steel, 2nd ed; ISBN: 978-0-471-00792-0.Google Scholar
  2. 2.
    Wang H, Sweikart M (2003) Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells. J. Power Sources 115:243–251CrossRefGoogle Scholar
  3. 3.
    Abdallah M (2003) Corrosion behaviour of 304 stainless steel in sulphuric acid solutions and its inhibition by some substituted pyrazolones. Mater Chem Phys 82:786–792CrossRefGoogle Scholar
  4. 4.
    Kazazi M, Haghighi M, Yarali D, Zaynolabedini MH (2018) Improving corrosion resistance of 316L austenitic stainless steel using ZrO2 Sol-Gel coating in nitric acid solution. J Mater Eng Perform 27:1093–1102CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Budman E, Stevens D (1998) Tin-zinc plating. Anti-Corrosion Methods Mater 45:327–332CrossRefGoogle Scholar
  7. 7.
    Audronis M, Kelly PJ, Arnell RD et al (2005) Deposition of multicomponent chromium boride based coatings by pulsed magnetron sputtering of powder targets. Surf Coatings Technol 200:1616–1623CrossRefGoogle Scholar
  8. 8.
    Stamm, Werner, (1999) Product with an anticorrosion protective layer and a method for producing an anticorrosion protective, US6610419.Google Scholar
  9. 9.
    Tedim J, Poznyak SK, Kuznetsova A et al (2010) Enhancement of active corrosion protection via combination of inhibitor-loaded nanocontainers. ACS Appl Mater Interfaces 2:1528–1535PubMedCrossRefGoogle Scholar
  10. 10.
    Sutthiruangwong S, Mori G (2003) Corrosion properties of Co-based cemented carbides in acidic solutions. Int J Refract Met Hard Mater 21:135–145CrossRefGoogle Scholar
  11. 11.
    Nunes PCR, Ramanathan LV (1995) Corrosion behavior of alumina-aluminum and silicon carbide-aluminum metal-matrix composites. Corrosion 51:610–617CrossRefGoogle Scholar
  12. 12.
    Kao C-T, Ding S-J, Chen Y-C, Huang T-H (2002) The anticorrosion ability of titanium nitride (TiN) plating on an orthodontic metal bracket and its biocompatibility. J Biomed Mater Res 63:786–792PubMedCrossRefGoogle Scholar
  13. 13.
    Mahvash F, Eissa S, Bordjiba T et al (2017) Corrosion resistance of monolayer hexagonal boron nitride on copper. Sci Rep 7:42139PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Dennis J, Such T (1993) Nickel and chromium plating, ISBN- 9781845698638.Google Scholar
  15. 15.
    Sun GF, Zhang YK, Zhang MK et al (2014) Microstructure and corrosion characteristics of 304 stainless steel laser-alloyed with Cr–CrB2. Appl Surf Sci 295:94–107CrossRefGoogle Scholar
  16. 16.
    Ürgen M, Çakir AF, Eryilmaz OL, Mitterer C (1995) Corrosion of zirconium boride and zirconium boron nitride coated steels. Surf Coatings Technol 71:60–66CrossRefGoogle Scholar
  17. 17.
    Monticelli C, Bellosi A, Dal Colle M (2004) Electrochemical behavior of ZrB2 in aqueous solutions. J Electrochem Soc 151:B331CrossRefGoogle Scholar
  18. 18.
    Armas IA (2008) Duplex stainless steels: brief history and some recent alloys Rec. Pat. Mech. Eng 1:1Google Scholar
  19. 19.
    Brach M, Medri V, Bellosi A (2007) Corrosion of pressureless sintered ZrB2-MoSi2 composite in H2SO4 aqueous solution. J Eur Ceram Soc 27:1357–1360CrossRefGoogle Scholar
  20. 20.
    Li L, Li H, Li Y et al (2015) A SiC-ZrB2-ZrC coating toughened by electrophoretically-deposited SiC nanowires to protect C/C composites against thermal shock and oxidation. Appl Surf Scienc 349:465–471CrossRefGoogle Scholar
  21. 21.
    Zimmermann JW, Hilmas GE, Fahrenholtz WG et al (2008) Thermophysical properties of ZrB2 and ZrB2-SiC ceramics. J Am Ceram Soc 91:1405–1411CrossRefGoogle Scholar
  22. 22.
    Feng HP, Hsu CH, Lu JK, Shy YH (2003) Effects of PVD sputtered coatings on the corrosion resistance of AISI 304 stainless steel. Mater Sci Eng A 349:73–79CrossRefGoogle Scholar
  23. 23.
    El-Egamy SS, Badaway WA (2004) Passivity and passivity breakdown of 304 stainless steel in alkaline sodium sulphate solutions. J Appl Electrochem 34:1153–1158CrossRefGoogle Scholar
  24. 24.
    Loto RT (2012) Corrosion resistance of austenitic stainless steel in sulphuric acid. Int J Phys Sci 7:1677–1688Google Scholar
  25. 25.
    Ohko Y, Saitoh S, Tatsuma T, Fujishima A (2001) Photoelectrochemical anticorrosion and self-cleaning effects of a TiO2 coating for type 304 stainless steel. J Electrochem Soc 148:B24CrossRefGoogle Scholar
  26. 26.
    Loa I, Kunc K, Syassen K, Bouvier P (2002) Crystal structure and lattice dynamics of AlB2 under pressure and implications for MgB2. Phy Rev B 66:134101CrossRefGoogle Scholar
  27. 27.
    Kinoshita H, Otani S, Kamiyama S et al (2001) Zirconium diboride (0001) as an electrically conductive lattice-matched substrate for gallium nitride. Japanese J Appl Physics 40:10–13CrossRefGoogle Scholar
  28. 28.
    Telle R, Sigl LS, Takagi K Boride-based hard materials. In: Handbook of Ceramic Hard Materials. Wiley-VCH Verlag GmbH, Weinheim, pp 802–945Google Scholar
  29. 29.
    Xin Y, Qizhong H, Zhean S et al (2016) Ablative property and mechanism of C/C-ZrB2-ZrC-SiC composites reinforced by SiC networks under plasma flame. Corros Sci 107:9–20CrossRefGoogle Scholar
  30. 30.
    Zhang Y, Li R, Jiang Y et al (2011) Morphology evolution of ZrB2 nanoparticles synthesized by sol-gel method. J Solid State Chem 184:2047–2052CrossRefGoogle Scholar
  31. 31.
    Mishra SK, Das S, Pathak LC (2004) Defect structures in zirconium diboride powder prepared by self-propagating high-temperature synthesis. Mater Sci Eng A 364:249–255CrossRefGoogle Scholar
  32. 32.
    Chen L, Gu Y, Yang Z et al (2004) Preparation and some properties of nanocrystalline ZrB2 powders. Scr Mater 50:959–961CrossRefGoogle Scholar
  33. 33.
    Zhao H, He Y, Jin Z (1995) Preparation of zirconium boride powder. J Am Ceram Soc 78:2534–2536CrossRefGoogle Scholar
  34. 34.
    Li R, Lou H, Yin S et al (2011) Nanocarbon-dependent synthesis of ZrB2 in a binary ZrO2 and boron system. J Alloys Compd 509:8581–8583CrossRefGoogle Scholar
  35. 35.
    Tian C, Gao D, Zhang Y et al (2011) Oxidation behaviour of zirconium diboride-silicon carbide ceramic composites under low oxygen partial pressure. Corros Sci 53:3742–3746CrossRefGoogle Scholar
  36. 36.
    Chamberlain AL, Fahrenholtz WG, Hilmas GE (2004) High-strength zirconium diboride-based ceramics. J Am Ceram Soc 1172:1170–1172CrossRefGoogle Scholar
  37. 37.
    Sonber JK, Suri AK (2011) Synthesis and consolidation of zirconium diboride: review. Adv Appl Ceram 110:321–334CrossRefGoogle Scholar
  38. 38.
    Zhang SC, Hilmas GE, Fahrenholtz WG (2006) Pressureless densification of zirconium diboride with boron carbide additions. J Am Ceram Soc 89:1544–1550CrossRefGoogle Scholar
  39. 39.
    Wang P, Qi Y, Zhou S, et al (2016) Polycrystalline ZrB2 coating prepared on graphite by chemical vapor deposition. Phys. Status Solidi B253 8:1590–1595. CrossRefGoogle Scholar
  40. 40.
    Pol VG, Pol SV, Gedanken A (2011) Dry autoclaving for the nanofabrication of sulfides, selenides, borides, phosphides, nitrides, carbides, and oxides. Adv Mater 23:1179–1190PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Zhang S, Khangkhamano M, Zhang H, Yeprem HA (2014) Novel synthesis of ZrB2 powder via molten-salt-mediated magnesiothermic reduction. J Am Ceram Soc 97:1686–1688CrossRefGoogle Scholar
  42. 42.
    Ran S, Van Der Biest O, Vleugels J (2010) ZrB2 powders synthesis by borothermal reduction. J Am Ceram Soc 93:1586–1590Google Scholar
  43. 43.
    Zou X, Fu Q, Liu L et al (2013) ZrB2-SiC coating to protect carbon/carbon composites against ablation. Surf Coatings Technol 226:17–21CrossRefGoogle Scholar
  44. 44.
    Haibo O, Cuiyan L, Jianfeng H et al (2016) Self-healing ZrB2–SiO2 oxidation resistance coating for SiC coated carbon/carbon composites. Corros Sci 110:265–272CrossRefGoogle Scholar
  45. 45.
    Motojima S, Funahashi K, Kurosawa K (1990) ZrB2 coated on copper plate by chemical vapour deposition, and its corrosion and oxidation stabilities. Thin Solid Films 189:73–79CrossRefGoogle Scholar
  46. 46.
    Lee D, Sim GD, Xiao K, Vlassak JJ (2014) Low-temperature synthesis of ultra-high-temperature coatings of ZrB2 using reactive multilayers. J Phys Chem C 118:21192–21198CrossRefGoogle Scholar
  47. 47.
    Stewart DM, Meulenberg RW, Lad RJ (2015) Nanostructure and bonding of zirconium diboride thin films studied by X-ray spectroscopy. Thin Solid Films 596:155–159CrossRefGoogle Scholar
  48. 48.
    Wang Q, Wang YL, Liu HJ, Zeng CL (2016) Electrochemical deposition of zirconium diboride coatings in NaCl-KCl-K2ZrF6-KBF4 melts. J Electrochem Soc 163:D636–D644CrossRefGoogle Scholar
  49. 49.
    Berni A., Mennig M., Schmidt H. (2004) Doctor Blade. In: Aegerter M.A., Mennig M. (eds) Sol-Gel Technologies for Glass Producers and Users. Springer, Boston, MA. CrossRefGoogle Scholar
  50. 50.
    Yang H, Jiang P (2010) Large-scale colloidal self-assembly by doctor blade coating. Langmuir 26:13173–13182PubMedCrossRefGoogle Scholar
  51. 51.
    Tran T-N, Huynh’ T-P, Hoanq’ T-T, et al (2009) Preparation of TiO2 thin film using modified doctor-blade method for improvement of dye-sensitized solar cell. Conference Record of the IEEE Photovoltaic Specialists Conference.
  52. 52.
    Basak A, Deka H, Mondal A, Singh UP (2018) Impact of post-deposition annealing in Cu2SnS3 thin film solar cells prepared by doctor blade method. Vacuum 156:298–301CrossRefGoogle Scholar
  53. 53.
    Hiromoto S (2010) Corrosion of metallic biomaterials. In: Metals for Biomedical Devices. Elsevier, 2nd edition, pp 99–121Google Scholar
  54. 54.
    Cardinale AM, Macciò D, Luciano G et al (2017) Thermal and corrosion behavior of as cast Al Si alloys with rare earth elements. J Alloys Compd 695:2180–2189CrossRefGoogle Scholar
  55. 55.
    Di Maggio R, Fedrizzi L, Rossi S, Scardi P (1996) Dry and wet corrosion behaviour of AISI 304 stainless steel coated by sol-gel ZrO2-CeO2 films. Thin Solid Films 286:127–135CrossRefGoogle Scholar
  56. 56.
    Wang Z, Zhao Q, Jing L et al (2016) Corrosion behavior of ZrB2–SiC–graphite ceramic in strong alkali and strong acid solutions. Ceram Int 42:2926–2932CrossRefGoogle Scholar
  57. 57.
    Monticelli C, Zucchi F, Pagnoni A, Dal Colle M (2005) Corrosion of a zirconium diboride/silicon carbide composite in aqueous solutions. Electrochim Acta 50:3461–3469CrossRefGoogle Scholar
  58. 58.
    Yang H, Zhang J, Li J et al (2018) Electrochemical corrosion behavior of zirconium diboride ceramic in concentrated alkaline solutions. Mater Res Express 5:126302CrossRefGoogle Scholar
  59. 59.
    Revie RW, Robert W, Uhlig HH (2011) Uhlig’s corrosion handbook. ISBN: 978-0-470-08032-0, p-1296Google Scholar
  60. 60.
    Lavrenko VO, Shvets VA, Talash VM et al (2012) Electrochemical oxidation of ZrB2–MoSi2 ceramics in a 3% NaCl solution. Powder Metall Met Ceram 50:749–753CrossRefGoogle Scholar
  61. 61.
    Orazem ME, Tribollet B (2011) Electrochemical impedance spectroscopy. John Wiley & Sons. p-560Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Nano Science & TechnologyMohaliIndia
  2. 2.Department of Chemistry and EVSCNew Jersey Institute of TechnologyNewarkUSA
  3. 3.Department of ChemistryIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations