Advertisement

Determination of Gibbs energy of formation of LiThF5, LiTh2F9, and LiTh4F17 in Li-Th-F system by using solid electrolyte galvanic cell

  • Sumanta MukherjeeEmail author
  • Smruti Dash
Original Paper
  • 20 Downloads

Abstract

The LiF-ThF4 system has been considered as reference fuel solvent for molten salt reactor. The high-temperature interaction of LiF-ThF4 leads to formation of a number of complex fluoride compounds. The study is focused on determination of experimental thermodynamic properties of the compounds in this system. The Gibbs energy of formation of LiThF5 (s), LiTh2F9 (s), and LiTh4F17 (s) has been measured by solid electrolyte galvanic cell method and the Gibbs energy of formation of these compounds as a function of temperature were expressed as
$$ {\Delta}_{\mathrm{f}}G{}^{\circ}{}_{\mathrm{m}}\left({\mathrm{LiThF}}_5,\mathrm{s},T\right)\ \mathrm{kJ}\ {\mathrm{m}\mathrm{ol}}^{-1}=\left(-2738.7\pm 0.6\right)+\left(0.4050\kern0.5em \pm 0.0007\right)\cdotp \left(T/\mathrm{K}\right) $$
$$ {\Delta}_{\mathrm{f}}G{}^{\circ}{}_{\mathrm{m}}\left({\mathrm{LiTh}}_2{\mathrm{F}}_9,\mathrm{s},T\right)\ \mathrm{kJ}\ {\mathrm{m}\mathrm{ol}}^{-1}=\left(-4885.1\pm 0.8\right)+\left(0.7430\pm 0.0009\right)\cdotp \left(T/\mathrm{K}\right) $$
$$ {\Delta}_{\mathrm{f}}G{}^{\circ}{}_{\mathrm{m}}\left({\mathrm{LiTh}}_4{\mathrm{F}}_{17},\mathrm{s},T\right)\ \mathrm{kJ}\ {\mathrm{m}\mathrm{ol}}^{-1}=\left(-9126.5\pm 2.6\right)+\left(1.3801\pm 0.0034\right)\cdotp \left(T/\mathrm{K}\right) $$

The heat capacities of these compounds were also measured using differential scanning calorimeter. Using the experimental thermodynamic data, the thermodynamic tables of LiThF5 (s), LiTh2F9 (s), and LiTh4F17 (s) were constructed and the ternary phase diagram of Li-Th-F system was calculated to study the stability domain and coexisting phases of these compounds.

Keywords

MSR E.M.F. LiThF5 (s) LiTh2F9 (s) LiTh4F17 (s) Ternary phase diagram 

Notes

Acknowledgments

The authors are thankful to Dr. S. Kannan, Head, Fuel Chemistry Division, for his constant support and encouragement. The authors are also thankful to Smt. Geeta Selke for X-ray diffraction analysis of the samples.

References

  1. 1.
    Blumberg R (1967) Maintenance Development or Molten-Salt Breeder Reactors ORNL-TM-1859. Oak Ridge National LaboratoryGoogle Scholar
  2. 2.
    Perry AM, Bauman HF (1970) Nucl Appl Techn 8:208–215CrossRefGoogle Scholar
  3. 3.
    Briggs RB (1963) Molten Salt Reactor Program Semiannual Progress Report for Period Ending July 31, 1963, ORNL-3529. Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  4. 4.
    Vijayan PK, Basak A, Dulera IV, Vaze KK, Basu S, Sinha RK (2015) Pramana. J Phys 85(3):539–554Google Scholar
  5. 5.
    Sinha RK (2011) Energy Procedia 7:34–50CrossRefGoogle Scholar
  6. 6.
    Kasten PR (1967) “Safety program for molten-salt breeder reactors,” ORNL-TM-1858. Oak Ridge National LaboratoryGoogle Scholar
  7. 7.
    McCoy E, Weir JR (1967) Materials development for molten salt breeder reactors, ORNL-TM1854. Oak Ridge National LaboratoryGoogle Scholar
  8. 8.
    Macpherson HG (1969) “Molten-Salt Reactors,” Proceedings of the International Conference on the Constructive Uses of Atomic Energy, Washington, DC, November 1968, American Nuclear SocietyGoogle Scholar
  9. 9.
    Delpech S, Merle-Lucotte E, Heuer D, Allibert M, Ghetta V, Le-Brun C, Doligez X, Picard G (2009) J Fluor Chem 130(1):11–18CrossRefGoogle Scholar
  10. 10.
    Beneš O, Beilmann M, Konings RJM (2010) J Nucl Mater 405(2):186–198CrossRefGoogle Scholar
  11. 11.
    Capelli E, Beneš O, Beilmann M, Konings RJM (2013) J Chem Thermodyn 58:110–116CrossRefGoogle Scholar
  12. 12.
    Capelli E, Beneš O, Konings RJM (2015) J Nucl Mater 462:43–53CrossRefGoogle Scholar
  13. 13.
    Bird JM, Bryant AW, Pratt JN (1975) J Chem Thermodyn 7(6):577–586CrossRefGoogle Scholar
  14. 14.
    Bugden WG, Pratt JN (1969) J Chem Thermodyn 1(4):353–361CrossRefGoogle Scholar
  15. 15.
    Pratt JN (1990) Metall Trans A 21(4):1223–1250CrossRefGoogle Scholar
  16. 16.
    Wagner C (1968) J Electrochem Soc 115(9):933–935CrossRefGoogle Scholar
  17. 17.
    Wagner C (1953) J Chem Phys 21(10):1819–1827CrossRefGoogle Scholar
  18. 18.
    Jacob KT, Iyengar GNK (1999) Metall Mater Trans B 30B:865–870CrossRefGoogle Scholar
  19. 19.
    Ramasesha SK (1989) J Appl Electrochem 19(3):394–400CrossRefGoogle Scholar
  20. 20.
    Jacob KT, Rajitha G (2011) J Chem Thermodyn 43(1):51–57CrossRefGoogle Scholar
  21. 21.
    Jacob KT, Waseda Y (1994) Thermochim Acta 239:233–241CrossRefGoogle Scholar
  22. 22.
    Fitzner K (1983) Zeitschrift fuer Metallkunde 74(11):755–757Google Scholar
  23. 23.
    Hohne GWH, Hemminger WF, Flammershein HJ (2003) Differential scanning calorimetry, second edn. Springer, BerlinCrossRefGoogle Scholar
  24. 24.
    Mukherjee S, Dash S (2019) J Solid State Electrochem 23(1):307–314CrossRefGoogle Scholar
  25. 25.
    Barin I, Knacke O (1973) Thermochemical properties of inorganic substances. Springer - Verlag, New YorkGoogle Scholar
  26. 26.
    Mukherjee S, Dash S (2017) J Solid State Electrochem 21(12):3589–3597CrossRefGoogle Scholar
  27. 27.
    Mukherjee S, Dash S (2018) J Fluor Chem 212:17–25CrossRefGoogle Scholar
  28. 28.
    (1997) PDF-2 Database, Powder Diffraction File, International Centre for Diffraction Data, PennsylvaniaGoogle Scholar
  29. 29.
    Kopp H (1865) Philos Trans R Soc Lond 155:71CrossRefGoogle Scholar
  30. 30.
    Leitner J, Voňkab P, Sedmidubský D, Svobodae P (2010) Thermochim Acta 497(1-2):7–13CrossRefGoogle Scholar
  31. 31.
    Lukas HL, Fries SG, Sundman B (2007) Computational thermodynamics, the Calphad Method. Cambridge University PressGoogle Scholar
  32. 32.
    Kaufman L, Bernstein H (1970) Computer Calculation of Phase Diagrams. Academic Press, New YorkGoogle Scholar
  33. 33.
    Pelton AD, Chartrand P, Eriksson G (2001) Metall Mater Trans A 32A(6):1409–1416CrossRefGoogle Scholar
  34. 34.
    Mukherjee S, Dash S, Mukerjee SK, Ramakumar KL (2015) J Nucl Mater 465:604–614CrossRefGoogle Scholar
  35. 35.
    FactSage Version 6.3, “The Integrated Thermodynamic Data Bank System”. GTT Technologies, GmbH, Germany, pp 1976–2006Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Fuel Chemistry DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Homi Bhabha National Institute (HBNI)Bhabha Atomic Research CentreMumbaiIndia

Personalised recommendations