Journal of Solid State Electrochemistry

, Volume 23, Issue 11, pp 3031–3041 | Cite as

Improved photoelectric performance of DSSCs based on TiO2 nanorod array/Ni-doped TiO2 compact layer composites film

  • Yafeng Deng
  • Zhanhong MaEmail author
  • Fengzhang RenEmail author
  • Guangxin Wang
Original Paper


In spite of the TiO2 compact layer (TCL) being widely used, it still needs more study. This paper took Ni-doped TCLs as the research target, using an innovative two-step method perfectly prepared Ni-doped TCLs with different thicknesses. And then on the basis of Ni-doped TCLs, the TiO2 nanorod array (TNA) films were successfully prepared. The effects of Ni-doped TCLs with different thicknesses on the morphology, structure, and photoelectric performance of TNA films were investigated. The results indicated that Ni-doped TCLs with appropriate thickness can significantly improve performance of TNA films and obtain satisfactory PCE stability with time. Compared with the TNA films based on Ni:TCL5, Ni:TCL10, and Ni:TCL30, the TNA film with Ni:TCL20 exhibited better comprehensive photoelectric performance, the DSSCs based on this TNA film achieved the highest Jsc (10.191 mA cm−2), Voc (0.574 V), PCE (4.42%), and the most excellent PCE stability with time.


Ni-doped TiO2 compact layer TiO2 nanorod array film Photoelectric performance PCE stability with time 


Funding information

This work was supported by the Chinese Postdoctoral Science Fund (2343/185179), the Chinese 02 Special Fund (2017ZX02408003), the Key Research Projects of Colleges and Universities in Henan province (15A430023), and the Henan International Science and Technology Cooperation Programs (152102410035).


  1. 1.
    Xu YM, Li XS, Xiao M, Xiong XM (2018) Growth of hierarchical TiO2 flower-like microspheres/oriented nanosheet arrays on titanium mesh for flexible dye-sensitized solar cells. CrystEngComm 20(40):6280–6290Google Scholar
  2. 2.
    Liu QH, Sun Q, Zhang M, Li Y, Zhao M, Dong LF (2016) Enhanced photoelectrical performance of dye-sensitized solar cells with double-layer TiO2 on perovskite SrTiO3 substrate. Appl Phys A Mater 122:1–5Google Scholar
  3. 3.
    Wang F, Liu Y, Zhao YF, Wang Y, Wang ZJ, Zhang WH, Ren FZ (2018) Facile synthesis of two-dimensional porous MgCo2O4 nanosheets as anode for lithium-ion batteries. Appl Sci Basel 8:22Google Scholar
  4. 4.
    Asemi M, Ghanaatshoar M (2017) Hydrothermal growth of one-dimensional Ce-doped TiO2 nanostructures for solid-state DSSCs comprising Mg-doped CuCrO2. J Mater Sci 52(1):489–503Google Scholar
  5. 5.
    Huang HJ, Zhen SY, Li PY, Tzeng SD, Chiang HP (2016) Confined migration of induced hot electrons in Ag/graphene/TiO2 composite nanorods for plasmonic photocatalytic reaction. Opt Express 24(14):15603–15608PubMedGoogle Scholar
  6. 6.
    Lee SH, Jin H, Kim DY, Song K, Oh SH, Kim SJ, Schubert EF, Kim JK (2014) Enhanced power conversion efficiency of quantum dot sensitized solar cells with near single-crystalline TiO2 nanohelixes used as photoanodes. Opt Express 22(S3):A867–A879PubMedGoogle Scholar
  7. 7.
    Ma ZH, Ren FZ, Ming XL, Long YQ, Volinsky AA (2019) Cu-doped ZnO electronic structure and optical properties studied by first-principles calculations and experiments. Materials 12(1):196PubMedCentralGoogle Scholar
  8. 8.
    Sanjay P, Deepa K, Madhavan J, Senthil S (2018) Optical, spectral and photovoltaic characterization of natural dyes extracted from leaves of Peltophorum pterocarpum and Acalypha amentacea used as sensitizers for ZnO based dye sensitized solar cells. Opt Mater 83:192–199Google Scholar
  9. 9.
    Wang YF, Luo QP, Ding Y, Wang X, Li XF, Li DJ (2018) Hydrothermal preparation of hierarchical SnO2 microsphere for efficient dye-sensitized solar cells. Mater Chem Phys 207:141–146Google Scholar
  10. 10.
    Ashok A, Vijayaraghavan SN, Unni GE, Nair SV, Shanmugam M (2018) On the physics of dispersive electron transport characteristics in SnO2 nanoparticle based dye sensitized solar cells. Nanotechnology 29(17):175401PubMedGoogle Scholar
  11. 11.
    Amini M, Keshavarzi R, Mirkhani V, Moghadam M, Tangestaninejad S, Baltork IM, Sadegh F (2018) From dense blocking layers to different templated films in dye sensitized and perovskite solar cells: toward light transmittance management and efficiency enhancement. J Mater Chem A 6(6):2632–2642Google Scholar
  12. 12.
    Peñafiel-Castro JA, Hahn B, Maltez RL, Knörnschild G, Allonguec P, Dick LFP (2018) Direct Li+ incorporation during anodic formation of compact TiO2 layers. Chem Commun 54(26):3251–3254Google Scholar
  13. 13.
    Akbar ZA, Oh JH, Hadmojo WT, Yang SJ, Do YR, Jang SY (2015) Improved performance of dye-sensitized solar cells using dual-function TiO2 nanowire photoelectrode. Opt Express 23(19):A1280–A1287PubMedGoogle Scholar
  14. 14.
    González-García L, Colodrero S, Míguez H, González-Elipe AR (2015) Single-step fabrication process of 1-D photonic crystals coupled to nanocolumnar TiO2 layers to improve DSC efficiency. Opt Express 23(24):A1642–A1650PubMedGoogle Scholar
  15. 15.
    Li YY, Wang JG, Sun HH, Wei BQ (2018) Heterostructured TiO2/NiTiO3 nanorod arrays for inorganic sensitized solar cells with significantly enhanced photovoltaic performance and stability. ACS Appl Mater Inter 10(14):11580–11586Google Scholar
  16. 16.
    Leidich P, Linker O, Panthöfer M, W b T (2014) Synthesis of single crystalline sub-micron rutile TiO2 rods using hydrothermal treatment in acidic media. CrystEngComm 16(36):8486–8491Google Scholar
  17. 17.
    Sivakumar R, Ramkumar J, Shaji S, Paulraj M (2016) Efficient TiO2 blocking layer for TiO2 nanorod arrays-based dye-sensitized solar cells. Thin Solid Films 615:171–176Google Scholar
  18. 18.
    Govindaraj R, Santhosh N, Pandian MS, Ramasamy P (2017) Synthesis of nanocrystalline TiO2 nanorods via hydrothermal method: an efficient photoanode material for dye sensitized solar cells. J Cryst Growth 468:125–128Google Scholar
  19. 19.
    Çırak BB, Karadeniz SM, Kılınç T, Caglar B, Ekinci AE, Yelgin H et al (2017) Synthesis, surface properties, crystal structure and dye sensitized solar cell performance of TiO2 nanotube arrays anodized under different voltages. Vacuum 144:183–189Google Scholar
  20. 20.
    Wan YL, Han MM, Yu LM, Yi GW (2016) Jia J H (2016) 3D Bi2S3 Salix leaf-like nanosheet_TiO2 nanorod branched heterostructure arrays for improving photoelectrochemical properties. CrystEngComm 18:1577–1584Google Scholar
  21. 21.
    Jeong I, Park YH, Bae S, Park M, Jeong H, Lee P, Ko MJ (2017) Solution-processed ultrathin TiO2 compact layer hybridized with mesoporous TiO2 for high-performance perovskite solar cells. ACS Appl Mater Inter 9(42):36865–36874Google Scholar
  22. 22.
    Qin JQ, Zhang ZL, Shi WJ, Liu YF, Gao HP, Mao YL (2017) The optimum titanium precursor of fabricating TiO2 compact layer for perovskite solar cells. Nanoscale Res Lett 12(1):640PubMedPubMedCentralGoogle Scholar
  23. 23.
    Coppo RL, Farnum BH, Sherman BD, Iha NYM, Meyer TJ (2017) The role of layer-by-layer compact TiO2 films in dye-sensitized photoelectrosynthesis cells. Sustain Energ Fuels 1(1):112–118Google Scholar
  24. 24.
    Huang JJ, Wu CK, Hsu CF (2017) Characterization of LPD-TiO2 compact layer in ZnO nano-rods photoelectrode for dye-sensitized solar cell. Appl Phys A Mater 123(12):741Google Scholar
  25. 25.
    Liu HJ, Bala H, Zhang B, Zong BB, Huang LW, Fu WY et al (2018) Thickness-dependent photovoltaic performance of TiO2 blocking layer for perovskite solar cells. J Alloys Compd 736:87–92Google Scholar
  26. 26.
    Manthina V, Agrios AG (2016) Blocking layers for nanocomposite photoanodes in dye sensitized solar cells: comparison of atomic layer deposition and TiCl4 treatment. Thin Solid Films 598:54–59Google Scholar
  27. 27.
    Shalan AE, Narra S, Oshikiri T, Ueno K, Shi X, Wu HP, Elshanawany MM, Wei-Guang Diau E, Misawa H (2017) Optimization of a compact layer of TiO2 via atomic-layer deposition for high-performance perovskite solar cells. Sustain Energ Fuels 1(7):1533–1540Google Scholar
  28. 28.
    Lellig P, Niedermeier MA, Rawolle M, Meister M, Laquai F, Buschbaum PM et al (2012) Comparative study of conventional and hybrid blocking layers for solid-state dye-sensitized solar cells. Phys Chem Chem Phys 14(5):1607–1613PubMedGoogle Scholar
  29. 29.
    Tanvi SV, Singh A, Prakash O, Mahajan A, Debnath AK et al (2017) Improved performance of dye sensitized solar cell via fine tuning of ultra-thin compact TiO2 layer. Sol Energy Mater Sol Cells 170:127–136Google Scholar
  30. 30.
    Yu H, Zhang SQ, Zhao HJ, Will G, Liu P (2009) An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells. Electrochim Acta 54(4):1319–1324Google Scholar
  31. 31.
    Ansari NP, Payandeh M, Asl FM, Nejand BM, Ahmadi V et al (2018) Novel nanostructured electron transport compact layer for efficient and large-area perovskite solar cells using acidic treatment of titanium layer. Nanotechnology 29(7):075404PubMedGoogle Scholar
  32. 32.
    Vivo P, Ojanpera A, Smått JH, Sanden S, Hashmi SG, Kaunisto K et al (2017) Influence of TiO2 compact layer precursor on the performance of perovskite solar cells. Org Electron 41:287–293Google Scholar
  33. 33.
    Surya S, Thangamuthu R, Senthil Kumar SM, Murugadoss G (2017) Synthesis and study of photovoltaic performance on various photoelectrode materials for DSSCs: optimization of compact layer on nanometer thickness. Superlattice Microst 102:424–441Google Scholar
  34. 34.
    Rajmohan GD, Huang FZ, d’Agostino R, Plessis JD, Dai XJ (2017) Low temperature reactively sputtered crystalline TiO2 thin film as effective blocking layer for perovskite solar cells. Thin Solid Films 636:307–313Google Scholar
  35. 35.
    Liu B, Aydil ES (2009) Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J Am Chem Soc 131(11):3985–3990PubMedGoogle Scholar
  36. 36.
    Wang W, Feng WL, Du J, Xue WN, Zhang LL, Zhao LL et al (2018) Cosensitized quantum dot solar cells with conversion efficiency over 12%. Adv Mater 30(11):1705746Google Scholar
  37. 37.
    Deng YF, Ma ZH, Ren FZ, Wang GX, Volinsky AA (2019) Enhanced morphology and photoelectric properties of one-dimensional TiO2 nanorod array films. Chem Phys Lett 724:42–49Google Scholar
  38. 38.
    Lv YQ, Li YH, Sun HX, Guo Y, Li YM, Tan JK et al (2018) Yttrium-doped TiO2 nanorod arrays and application in perovskite solar cells for enhanced photocurrent density. Thin Solid Films 651:117–123Google Scholar
  39. 39.
    Xu WL, Yuan H, Xiao J, Xiong C, Zhu XF (2017) Morphology, photophysics and optoelectronics of P3HT nanoparticles and TiO2 nanorods composite. Int J Mod Phys B 31(16-19):1744053Google Scholar
  40. 40.
    Alvi MA, Alghamdi AA, Zulfequar M (2016) Synthesis and characterization of cadmium chalcogenide semiconductor quantum dots based thin film. J Nanoelectron Optoelectron 11(5):656–661Google Scholar
  41. 41.
    Liu DT, Li SB, Zhang P, Wang YF, Zhang R, Sarvari H et al (2017) Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO2 layer. Nano Energy 31:462–468Google Scholar
  42. 42.
    Naceur JB, Ouertani R, Chakhari W, Chtourou R (2019) Photo-electrochemical properties of Sb2S3/TiO2 heterostructures integrally synthesis by hydrothermal method. J Mater Sci Mater Electron 30(6):5631–5639Google Scholar
  43. 43.
    Rezaei B, Mohammadi I, Ensafi AA, Momeni MM (2017) Enhanced efficiency of DSSC through AC-electrophoretic hybridization of TiO2 nanoparticle and nanotube. Electrochim Acta 247:410–419Google Scholar
  44. 44.
    Bott AW (1998) Electrochemistry of semiconductors. Curr Sep 17:87–91Google Scholar
  45. 45.
    Niu XY, Yan WJ, Shao CC, Zhao HL, Yang JK (2019) Hydrothermal synthesis of Mo-C co-doped TiO2 and coupled with fluorine-doped tin oxide (FTO) for high-efficiency photodegradation of methylene blue and tetracycline: effect of donor-acceptor passivated co-doping. Appl Surf Sci 466:882–892Google Scholar
  46. 46.
    Deng YF, Ma ZH, Ren FZ, Wang GX (2019) Enhanced photoelectrochemical performance of TiO2 nanorods array films based on TiO2 compact layers synthesized by a two-step method. RSC Adv 9(38):21777–21785Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHenan University of Science and TechnologyLuoyangPeople’s Republic of China
  2. 2.Henan Collaborative Innovation Centre of Non-Ferrous Generic TechnologyLuoyangPeople’s Republic of China
  3. 3.Henan Key Laboratory of Non-Ferrous Materials Science and Processing TechnologyLuoyangPeople’s Republic of China

Personalised recommendations