Polyethylene glycol-assisted growth of Ni3S4 closely packed nanosheets on Ni-foam for enhanced supercapacitor device

  • Nandhini Sonai Muthu
  • Muralidharan GopalanEmail author
Original Paper


Rich redox peaks, high surface area, good surface wettability, fast ion passage channels, high rate capability and excellent stability are some of the essential features of an electrode for the superior electrochemical performance of a material for charge storage applications. In this work, we report the synthesis of Ni3S4 nanostructures on Ni-foam at various polyethylene glycol (PEG) concentrations, via the hydrothermal route, for supercapacitor applications. The Ni3S4 nanostructures prepared with 402 mM PEG concentration (PNS3) offers a high specific capacitance of 1458 F g−1 at 2 A g−1 and retain 37% of rate capacitance at a high and more realistic current density of 50 A g−1. The PNS3 nanosheets exhibit outstanding stability over 2400 repeated cycling processes. The best capacitive performance of PNS3 is owing to its high surface area, closely packed nanosheet morphology, good surface wettability, uniform growth on the substrate and effective storage of hydroxyl ions in the mesopores. A symmetric supercapacitor device (PNS3//PNS3) delivers a large energy density of 34 W h kg−1 with a power density of 350 W kg−1. The electrochemical results and excellent symmetric device performance recommend Ni3S4 nanosheets (PNS3) to be a promising electrode material for supercapacitor applications.

Graphical abstract

Closely packed nanosheets offering high surface area and excellent energy density for enhanced supercapacitor applications


Ni3S4 closely packed nanosheets Hydrothermal growth Polyethylene glycol Symmetric supercapacitor device Energy density 



One of the authors, S. Nandhini (RGNF-2015-17-SC-TAM-18395), is thankful to the University Grants Commission, New Delhi, for providing the financial support through the Rajiv Gandhi National Fellowship (RGNF). The authors thank the Department of Science and Technology, Government of India, for providing x-ray diffraction facilities through FIST (SR/FST/PSI-199/2015(G)).

Supplementary material

10008_2019_4392_MOESM1_ESM.docx (2 mb)
ESM 1 The XRD, FESEM images of bare nickel sulphide and individual CV and GCD traces of other nanostructures are presented in supplementary file (DOCX 2035 kb)


  1. 1.
    Iro ZS, Subramani C, Dash SS (2016) A brief review on electrode materials for supercapacitor. Int J Electrochem Sci 11(12):10628–10643CrossRefGoogle Scholar
  2. 2.
    Liu W, Niu H, Yang J, Cheng K, Ye K, Zhu K, Wang G, Cao D, Yan J (2018) Ternary transition metal sulfides embedded in graphene nanosheets as both the anode and cathode for high-performance asymmetric supercapacitors. Chem Mater 30(3):1055–1068CrossRefGoogle Scholar
  3. 3.
    Nandhini S, Juliet Christina Mary A, Muralidharan G (2018) Facile microwave-hydrothermal synthesis of NiS nanostructures for supercapacitor applications. Appl Surf Sci 449:485–491CrossRefGoogle Scholar
  4. 4.
    Gao Z, Chen C, Chang J, Chen L, Wang P, Wu D, Xu F, Jiang K (2018) Porous Co3S4@Ni3S4 heterostructure arrays electrode with vertical electrons and ions channels for efficient hybrid supercapacitor. Chem Eng J 343:572–582CrossRefGoogle Scholar
  5. 5.
    Saravanakumar B, Purushothaman KK, Muralidharan G (2018) V2O5/nitrogen enriched mesoporous carbon spheres nanocomposite as supercapacitor electrode. Microporous Mesoporous Mater 258:83–94CrossRefGoogle Scholar
  6. 6.
    Wang L, Liu J, Zhang L, Dai B, Xu M, Ji M, Zhao G, Cao C, Zhang J, Zhu H (2015) Rigid three-dimensional Ni3S4 nanosheet frames: controlled synthesis and their enhanced electrochemical performance. RSC Adv 5(11):8422–8426CrossRefGoogle Scholar
  7. 7.
    Gao MR, Xu YF, Jiang J, Yu SH (2013) Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem Soc Rev 42(7):2986–3017CrossRefGoogle Scholar
  8. 8.
    Zhang Y, Sun W, Rui X, Li B, Tan HT, Guo G, Madhavi S, Yan Q (2015) One-Pot Synthesis of Tunable Crystalline Ni3S4@Amorphous MoS2 Core/Shell Nanospheres for High-Performance Supercapacitors. Small 11(30):3694–3702CrossRefGoogle Scholar
  9. 9.
    Chen H, Jiang J, Zhang L, Qi T, Xia D, Wan H (2014) Facilely synthesized porous NiCo2O4 flower like nanostructure for high-rate supercapacitors. J Power Sources 248:28–36CrossRefGoogle Scholar
  10. 10.
    Kang J, Ryu I, Choe G, Kim G, Yim S (2017) Simple fabrication of nickel sulphide nanostructured electrode using alternate dip coating method and its supercapacitive properties. Int J Electrochem Sci 12:9588–9600CrossRefGoogle Scholar
  11. 11.
    Rui X, Tan H, Yan Q (2014) Nanostructured metal sulfides for energy storage. Nanoscale 6(17):9889–9924CrossRefGoogle Scholar
  12. 12.
    Yu XY, Lou XW (2018) Mixed metal sulfides for electrochemical energy storage and conversion. Adv Energy Mater 8(3):1701592–1701629CrossRefGoogle Scholar
  13. 13.
    Gross S, Vittadini A, Dengo N (2017) Functionalisation of colloidal transition metal sulphides nanocrystals: a fascinating and challenging playground for the chemist. Crystals 7(4):110–150CrossRefGoogle Scholar
  14. 14.
    An C, Zhang Z, Chen X, Liu Y (2006) Selective synthesis of Ni3S4 nanocrystallites with hollow structures through a solution-phase approach. Mater Lett 60(29-30):3631–3634CrossRefGoogle Scholar
  15. 15.
    Ji S, Zhang L, Yu L, Xu X, Liu J (2016) In situ carbon-coating and Ostwald ripening-based route for hollow Ni3S4@C spheres with superior Li-ion storage performances. RSC Adv 6(104):101752–101759CrossRefGoogle Scholar
  16. 16.
    Billakanti S, Baskaran GK, Muralidharan K (2017) Recyclable Ni3S4 nanocatalyst for hydrogenation of nitroarenes. ChemistrySelect 2(17):4753–4758CrossRefGoogle Scholar
  17. 17.
    Vidyasagar CC, Naik YA (2016) Surfactant (PEG 400) effects on crystallinity of ZnO nanoparticles. Arab J Chem 9(4):507–510CrossRefGoogle Scholar
  18. 18.
    Neiva EG, Bergamini MF, Oliveira MM, Marcolino LH Jr, Zarbin AJ (2014) PVP-capped nickel nanoparticles: synthesis, characterization and utilization as a glycerol electrosensor. Sensor Actuat B-Chem 196:574–581CrossRefGoogle Scholar
  19. 19.
    Abd El-Ghaffar MA, Sherif MH, Taher El-Habab A (2017) Synthesis, characterization, and evaluation of ethoxylated lauryl-myrisityl alcohol nonionic surfactants as wetting agents, anti-foamers, and minimum film forming temperature reducers in emulsion polymer lattices. J Surfactant Deterg 20(1):117–128CrossRefGoogle Scholar
  20. 20.
    Yan J, Chen L, Li Z (2016) Removal of fine particles from coal combustion in the combined effect of acoustic agglomeration and seed droplets with wetting agent. Fuel 165:316–323CrossRefGoogle Scholar
  21. 21.
    McGarvey PW, Hoffmann MM (2018) Solubility of some mineral salts in polyethylene glycol and related surfactants. Tenside Surfactant Deterg 55(3):203–209CrossRefGoogle Scholar
  22. 22.
    Zhang C, Zhang J, Li W, Feng X, Hou M, Han B (2008) Formation of micelles of pluronic block copolymers in PEG 200. J Colloid Interface Sci 327(1):157–161CrossRefGoogle Scholar
  23. 23.
    Balayeva OO, Azizov AA, Muradov MB, Maharramov AM, Eyvazova GM, Alosmanov RM, Mamiyev ZM, Aghamaliyev ZA (2016) β-NiS and Ni3S4 Nanostructures: fabrication and characterization. Mater Res Bull 75:155–161CrossRefGoogle Scholar
  24. 24.
    Patil AM, Lokhande VC, Lokhande AC, Chodankar NR, Ji T, Kim JH, Lokhande CD (2016) Ultrathin nickel sulfide nano-flames as an electrode for high performance supercapacitor; comparison of symmetric FSS-SCs and electrochemical SCs device. RSC Adv 6(72):68388–68401CrossRefGoogle Scholar
  25. 25.
    Cholan S, Shanmugam N, Kannadasan N, Sathishkumar K, Deivam K (2014) Effect of poly ethylene glycol (PEG) as surfactant on cerium doped ZnS nanoparticles. J Mater Res Technol 3(3):222–227CrossRefGoogle Scholar
  26. 26.
    Yin PF, Han XY, Zhou C, Xia CH, Hu CL, Sun LL (2015) Large-scale synthesis of nickel sulfide micro/nanorods via a hydrothermal process. Int J Miner Metall Mater 22(7):762–769CrossRefGoogle Scholar
  27. 27.
    Pandey G (2012) Synthesis, characterization and optical properties determination of millerite NiS nanorods. Physica E Low dimens Syst Nanostruct 44(7-8):1657–1661CrossRefGoogle Scholar
  28. 28.
    Nandhini S, Muralidharan G (2019) Mesoporous nickel sulphide nanostructures for enhanced supercapacitor performance. Appl Surf Sci 480:186–198CrossRefGoogle Scholar
  29. 29.
    Mary AJC, Bose AC (2017) Hydrothermal synthesis of Mn-doped ZnCo2O4 electrode material for high-performance supercapacitor. Appl Surf Sci 425:201–211CrossRefGoogle Scholar
  30. 30.
    Wang Y, Zhu Q, Tao L, Su X (2011) Controlled-synthesis of NiS hierarchical hollow microspheres with different building blocks and their application in lithium batteries. J Mater Chem 21(25):9248–9254CrossRefGoogle Scholar
  31. 31.
    Pang H, Wei C, Li X, Li G, Ma Y, Li S, Chen J, Zhang J (2014) Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production. Sci Rep 4:3577–3586CrossRefGoogle Scholar
  32. 32.
    Li Z, Han J, Fan L, Guo R (2015) Template-free synthesis of Ni7S6 hollow spheres with mesoporous shells for high performance supercapacitors. CrystEngComm 17(9):1952–1958CrossRefGoogle Scholar
  33. 33.
    Yang J, Guo W, Li D, Wei C, Fan H, Wu L, Zheng W (2014) Synthesis and electrochemical performances of novel hierarchical flower-like nickel sulfide with tunable number of composed nanoplates. J Power Sources 268:113–120CrossRefGoogle Scholar
  34. 34.
    Yang J, Duan X, Guo W, Li D, Zhang H, Zheng W (2014) Electrochemical performances investigation of NiS/rGO composite as electrode material for supercapacitors. Nano Energy 5:74–81CrossRefGoogle Scholar
  35. 35.
    Yang J, Duan X, Qin Q, Zheng W (2013) Solvothermal synthesis of hierarchical flower-like β-NiS with excellent electrochemical performance for supercapacitors. J Mater Chem A 1(27):7880–7884CrossRefGoogle Scholar
  36. 36.
    Xing Z, Chu Q, Ren X, Tian J, Asiri AM, Alamry KA, Al-Youbi AO, Sun X (2013) Biomolecule-assisted synthesis of nickel sulfides/reduced graphene oxide nanocomposites as electrode materials for supercapacitors. Electrochem Commun 32:9–13CrossRefGoogle Scholar
  37. 37.
    Li W, Wang S, Xin L, Wu M, Lou X (2016) Single-crystal β-NiS nanorods arrays with hollow-structured Ni3S2 framework for supercapacitor applications. J Mater Chem A 4(20):7700–7709CrossRefGoogle Scholar
  38. 38.
    Huang F, Sui Y, Wei F, Qi J, Meng Q, He Y (2018) Ni3S4 supported on carbon cloth for high-performance flexible all-solid-state asymmetric supercapacitors. J Mater Sci Mater Electron 29(3):2525–2536CrossRefGoogle Scholar
  39. 39.
    Wang H, Liang M, Duan D, Shi W, Song Y, Sun Z (2018) Rose-like Ni3S4 as battery-type electrode for hybrid supercapacitor with excellent charge storage performance. Chem Eng J 350:523–533CrossRefGoogle Scholar
  40. 40.
    Zhang Y, Jiang H, Wang Q, Zheng J, Meng C (2018) Kelp-derived three-dimensional hierarchical porous N, O-doped carbon for flexible solid-state symmetrical supercapacitors with excellent performance. Appl Surf Sci 447:876–885CrossRefGoogle Scholar
  41. 41.
    Nandhini S, Shobana Devi S, Muralidharan G (2019) Influence of thiourea concentration on the CuS nanostructures and identification of the most suited electrolyte for high energy density supercapacitor. Ionics 25(9):4409–4423Google Scholar
  42. 42.
    Kong W, Lu C, Zhang W, Pu J, Wang Z (2015) Homogeneous core–shell NiCo2S4 nanostructures supported on nickel foam for supercapacitors. J Mater Chem A 3(23):12452–12460CrossRefGoogle Scholar
  43. 43.
    Li Y, Cao L, Qiao L, Zhou M, Yang Y, Xiao P, Zhang Y (2014) Ni–Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors. J Mater Chem A 2(18):6540–6548CrossRefGoogle Scholar
  44. 44.
    Chen H, Chen S, Shao H, Li C, Fan M, Chen D, Tian G, Shu K (2016) Hierarchical NiCo2S4 nanotube@NiCo2S4 nanosheet arrays on Ni foam for high-performance supercapacitors. Chem Asian J 11(2):248–255CrossRefGoogle Scholar
  45. 45.
    Dai CS, Chien PY, Lin JY, Chou SW, Wu WK, Li PH, Wu KY, Lin TW (2013) Hierarchically structured Ni3S2/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors. ACS Appl Mater Interfaces 5(22):12168–12174CrossRefGoogle Scholar
  46. 46.
    Tang Y, Chen T, Yu S, Qiao Y, Mu S, Zhang S, Zhao Y, Hou L, Huang W, Gao F (2015) A highly electronic conductive cobalt nickel sulphide dendrite/quasi-spherical nanocomposite for a supercapacitor electrode with ultrahigh areal specific capacitance. J Power Sources 295:314–322CrossRefGoogle Scholar
  47. 47.
    Chen H, Jiang J, Zhang L, Xia D, Zhao Y, Guo D, Qi T, Wan H (2014) In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. J Power Sources 254:249–257CrossRefGoogle Scholar
  48. 48.
    Chen H, Jiang J, Zhang L, Qi T, Xia D, Wan H (2014) Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors. J Power Sources 248:28–36CrossRefGoogle Scholar
  49. 49.
    Li Z, Yu X, Gu A, Tang H, Wang L, Lou Z (2017) Anion exchange strategy to synthesis of porous NiS hexagonal nanoplates for supercapacitors. Nanotechnology 28(6):065406CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsThe Gandhigram Rural Institute - Deemed to be UniversityDindigulIndia

Personalised recommendations