Improving of the battery performance of Dy-substituted LiCoO2 and investigating the mechanism of the cells

  • S. AltinEmail author
  • S. Altundag
  • E. Altin
  • A. Bayri
Original Paper


In this study, we successfully fabricated LiCo1-xDyxO2 (where x = 0.0–0.5) samples and investigated the structural and electrochemical properties. The Dy-substituted LiCoO2 samples were characterized by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Fourier-transform infrared (FTIR), and Raman measurements before and after cycling. The lattice volume and effective magnetic moment were increased by the substitution of the Dy ions in the structure. The capacity fading mechanism of Dy-substituted LiCoO2 via ex situ X-ray diffraction, XAS, Raman and FTIR spectroscopy were investigated. According to the electrochemical performance of the batteries, the x = 0.04 electrode had better cycling properties up to 400 cycles, which are better than that of the pure LiCoO2. We suggested that the critical number of Dy in LiCoO2 facilitates the Li-diffusion by increasing lattice volume. According to the battery performance temperature dependence analysis from 10 to 50 °C, the electrolyte just below degradation temperature shows better cycling since the ions are more mobile in this case.


LiCoO2 Dy doping XAFS 


Funding information

This study was supported by IUBAP (Inonu University Scientific Research Council)-FYL-2018-1030. The authors would like to thank  Dr. E. Oz for valuable contributions for data processing.


  1. 1.
    He P, Yu H, Li D, Zhou H (2012) Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J Mater Chem 22(9):3680CrossRefGoogle Scholar
  2. 2.
    Pang C, Xu G, An W, Ding G, Liu X, Chai J, Ma J, Liu H, Cui G (2017) Three-component functional additive in a LiPF6-based carbonate electrolyte for a high-voltage LiCoO2/graphite battery system. Energy Technol 5(11):1979–1989CrossRefGoogle Scholar
  3. 3.
    Yazami R, Lebrun N, Bonneau M, Molteni M (1995) High performance LiCoO2 positive electrode material. J Power Sources 54(2):389–392CrossRefGoogle Scholar
  4. 4.
    Davidson IJ, McMillan RS, Murray JJ, Greedan JE (1995) Lithium-ion cell based on orthorhombic LiMnO2. J Power Sources 54(2):232–235CrossRefGoogle Scholar
  5. 5.
    Kleiner K, Melke J, Merz M, Jakes P, Nagel P, Schuppler S, Liebau V, Ehrenberg H (2015) Unraveling the degradation process of LiNi 08 co 015 Al 005 O 2 electrodes in commercial lithium ion batteries by electronic structure investigations. ACS Appl Mater Interfaces 7(35):19589–19600CrossRefGoogle Scholar
  6. 6.
    An C, Zhang B, Tang L, Xiao B, Zheng J (2018) Ultrahigh rate and long-life nano-LiFePO4 cathode for Li-ion batteries. Electrochim Acta 283:385–392CrossRefGoogle Scholar
  7. 7.
    Reddy MV, Jie TW, Jafta CJ, Mathe MK, Nair AS, Peng SS, Idris MS, Balakrishna G, Ezema FI, Chowdari BVR (2014) Studies on bare and mg-doped LiCoO2 as a cathode material for lithium-ion batteries. Electrochim Acta 128:192–197CrossRefGoogle Scholar
  8. 8.
    Wang F, Jiang Y, Lin S, Wang W, Hu C, Wei Y, Mao B, Liang C (2019) High-voltage performance of LiCoO2 cathode studied by single particle microelectrodes – an influence of surface modification with TiO2. Electrochim Acta 295:1017–1026CrossRefGoogle Scholar
  9. 9.
    Ram P, Goren A, Ferdov S, Silva MM, Singhal R, Costa CM, Sharma RK, Lanceros-Mendez S (2016) Improved performance of rare earth doped LiMn2O4 cathodes for lithium-ion battery applications. New J Chem 40(7):6244–6252CrossRefGoogle Scholar
  10. 10.
    Hu S, Wang C, Zhou L, Zeng X, Shao L, Zhou J, Zhou C, Huang C, Xi X, Yang L (2018) Hydrothermal-assisted synthesis of surface aluminum-doped LiCoO2 nano-bricks for high-rate lithium-ion batteries. Ceram Int 44(13):14995–15000CrossRefGoogle Scholar
  11. 11.
    Kwon T, Ohnishi T, Mitsuishi K, Ozawa TC, Takada K (2015) Synthesis of LiCoO2 epitaxial thin films using a sol-gel method. J Power Sources 274:417–423CrossRefGoogle Scholar
  12. 12.
    Nishio K, Ohnishi T, Osada M, Ohta N, Watanabe K, Takada K (2016) Influences of high deposition rate on LiCoO2 epitaxial films prepared by pulsed laser deposition. Solid State Ionics 285:91–95CrossRefGoogle Scholar
  13. 13.
    Jung YS, Lu P, Cavanagh AS, Ban C, Kim G-H, Lee S-H, George SM, Harris SJ, Dillon AC (2013) Unexpected improved performance of ALD coated LiCoO2/graphite Li-ion batteries. Adv Energy Mater 3(2):213–219CrossRefGoogle Scholar
  14. 14.
    Mauger A, Julien CM (2015) Nanoscience supporting the research on the negative electrodes of Li-ion batteries. Nanomater 5:2279–2301CrossRefGoogle Scholar
  15. 15.
    Wang G, Li H, Zhang Q, Yu Z, Qu M (2011) The study of carbon nanotubes as conductive additives of cathode in lithium ion batteries. J Solid State Electrochem 15(4):759–764CrossRefGoogle Scholar
  16. 16.
    Aricò AS, Bruce P, Scrosati B, Tarascon J-M, Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366–377CrossRefGoogle Scholar
  17. 17.
    Sides CR, Li N, Patrissi CJ, Scrosati B, Martin CR (2002) Nanoscale materials for lithium-ion batteries. MRS Bull 27(8):604–607CrossRefGoogle Scholar
  18. 18.
    Kang S-H, Goodenough AJB, Rabenberg LK (2001) Effect of ball-milling on 3-V capacity of lithium−manganese oxospinel cathodes. Chem Mater 13(5):1758–1764CrossRefGoogle Scholar
  19. 19.
    Ghosh P, Mahanty S, Basu RN (2009) Lanthanum-doped LiCoO2 cathode with high rate capability. Electrochim Acta 54:1654–1661CrossRefGoogle Scholar
  20. 20.
    Gopukumar S, Jeong Y, Kim KB (2003) Synthesis and electrochemical performance of tetravalent doped LiCoO2 in lithium rechargeable cells. Solid State Ionics 159(3-4):223–232CrossRefGoogle Scholar
  21. 21.
    Venkatraman S, Subramanian V, Gopu Kumar S, Ranganathan N, Muniyandi N (2000) Capacity of layered cathode materials for lithium-ion batteries — a theoretical study and experimental evaluation. Electrochem Commun 2(1):18–22CrossRefGoogle Scholar
  22. 22.
    Ceder G, Chiang Y-M, Sadoway DR, Aydinol MK, Jang Y-I, Huang B (1998) Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature 392(6677):694–696CrossRefGoogle Scholar
  23. 23.
    Antolini E (2004) LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behavior and transport properties. Solid State Ionics 170(3-4):159–171CrossRefGoogle Scholar
  24. 24.
    Park Y, Shin SH, Hwang H, Lee SM, Kim SP, Choi HC (2014) Investigation of solid electrolyte interface (SEI) film on LiCoO2 cathode in fluoroethylene carbonate (FEC)-containing electrolyte by 2D correlation X-ray photoelectron spectroscopy (XPS). J Mol Struct 1069:157–163CrossRefGoogle Scholar
  25. 25.
    Jo M, Hong Y-S, Choo J, Cho J (2009) Effect of LiCoO2 cathode nanoparticle size on high rate performance for Li-ion batteries. J Electrochem Soc 156(6):A430CrossRefGoogle Scholar
  26. 26.
    Chang Z, Chen Z, Wu F, Tang H, Yuan XZ, Wang H (2008) Synthesis and characterization of nonspherical LiCoO2 with high tap density by two-step drying method. Electrochem Solid-State Lett 11(12):A229CrossRefGoogle Scholar
  27. 27.
    Liu L, Wang Z, Li H, Chen L, Huang X (2002) Al2O3-coated LiCoO2 as cathode material for lithium ion batteries. Solid State Ionics 152–153:341–346CrossRefGoogle Scholar
  28. 28.
    Jayasree SS, Nair S, Santhanagopalan D (2018) Ultrathin TiO 2 coating on LiCoO 2 for improved electrochemical performance as Li-ion battery cathode. ChemistrySelect 3(10):2763–2766CrossRefGoogle Scholar
  29. 29.
    Liu GQ, Kuo HT, Liu RS, Shen CH, Shy DS, Xing XK, Chen JM (2010) Study of electrochemical properties of coating ZrO2 on LiCoO2. J Alloys Compd 496(1-2):512–516CrossRefGoogle Scholar
  30. 30.
    Farid G, Murtaza G, Umair M, Arif HS, Ali HS, Muhammad N, Ahmad M (2018) Effect of La-doping on the structural, morphological and electrochemical properties of LiCoO2 nanoparticles using sol-gel technique. Mater Res Express 5(5):055044CrossRefGoogle Scholar
  31. 31.
    Valanarasu S, Chandramohan R, Somasundaram RM, Srikumar SR (2011) Structural and electrochemical properties of Eu-doped LiCoO2. J Mater Sci Mater Electron 22:151–157CrossRefGoogle Scholar
  32. 32.
    Bhuvaneswari S, Varadaraju UV, Gopalan R, Prakash R (2019) Structural stability and superior electrochemical performance of Sc-doped LiMn2O4 spinel as a cathode for lithium-ion batteries. Electrochim Acta 301:342–351CrossRefGoogle Scholar
  33. 33.
    Michalska M, Ziółkowska DA, Jasiński JB, Lee P-H, Ławniczak P, Andrzejewski B, Ostrowski A, Bednarski W, Wu S-H, Lin J-Y (2018) Improved electrochemical performance of LiMn2O4 cathode material by Ce doping. Electrochim Acta 276:37–46CrossRefGoogle Scholar
  34. 34.
    Yi T-F, Yin L-C, Ma Y-Q, Shen H-Y, Zhu Y-R, Zhu R-S (2013) Lithium-ion insertion kinetics of Nb-doped LiMn2O4 positive-electrode material. Ceram Int 39(4):4673–4678CrossRefGoogle Scholar
  35. 35.
    Wang L, Jiao C, Liang G, Zhao N, Wang Y, Li L (2014) Effect of rare earth ions doping on properties of LiFePO4/C cathode material. J Rare Earths 32895–899Google Scholar
  36. 36.
    Toby BH, Von Dreele RB (2013) GSAS-II: the genesis of a modern open-source all-purpose crystallography software package. J Appl Crystallogr 46(2):544–549CrossRefGoogle Scholar
  37. 37.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675CrossRefGoogle Scholar
  38. 38.
    Oz E, Altin S, Demirel S, Bayri A, Altin E, Baglayan O, Avci S (2016) Electrochemical effects and magnetic properties of B substituted LiCoO2: improving Li-battery performance. J Alloys Compd 657:835–847CrossRefGoogle Scholar
  39. 39.
    Needham SA, Wang GX, Liu HK, Drozd VA, Liu RS (2007) Synthesis and electrochemical performance of doped LiCoO2 materials. J Power Sources 174(2):828–831CrossRefGoogle Scholar
  40. 40.
    Julien C (2000) Local environment in 4-volt cathode materials for Li-ion batteries, in mater Lithium-ion batter. Springer Netherlands, Dordrecht, pp 309–326CrossRefGoogle Scholar
  41. 41.
    Rao KJ, Benqlilou-Moudden H, Desbat B, Vinatier P, Levasseur A (2002) Infrared spectroscopic study of LiCoO2 thin films. J Solid State Chem 165(1):42–47CrossRefGoogle Scholar
  42. 42.
    Danset D, Alikhani AME, Manceron L (2004) Reactivity of atomic cobalt with molecular oxygen: a combined IR matrix isolation and theoretical study of the formation and structure of CoO2. J Phys Chem A 109:97–104CrossRefGoogle Scholar
  43. 43.
    Wang Z, Huang X, Chen L (2003) Performance improvement of surface-modified LiCoO2 cathode materials: an infrared absorption and X-ray photoelectron spectroscopic investigation. J Electrochem Soc 150(2):A199CrossRefGoogle Scholar
  44. 44.
    Chandrasekhar M, Nagabhushana H, Sudheerkumar KH, Dhananjaya N, Sharma SC, Kavyashree D, Shivakumara C, Nagabhushana BM (2014) Comparison of structural and luminescence properties of Dy2O3 nanopowders synthesized by co-precipitation and green combustion routes. Mater Res Bull 55:237–245CrossRefGoogle Scholar
  45. 45.
    Shaaban KHS, Saddeek YB, Aly K (2018) Physical properties of pseudo quaternary Na2B4O7 – SiO2 – MoO3 – Dy2O3 glasses. Ceram Int 44(4):3862–3867CrossRefGoogle Scholar
  46. 46.
    Dilawar Sharma N, Singh J, Vijay A, Samanta K, Dogra S, Bandyopadhyay AK (2016) Pressure-induced structural transition trends in Nanocrystalline rare-earth sesquioxides: a Raman investigation. J Phys Chem C 120(21):11679–11689CrossRefGoogle Scholar
  47. 47.
    Gross T, Hess C (2014) Raman diagnostics of LiCoO2 electrodes for lithium-ion batteries. J Power Sources 256:220–225CrossRefGoogle Scholar
  48. 48.
    Inaba M, Todzuka Y, Yoshida H, Grincourt Y, Tasaka A, Tomida Y, Ogumi Z (1995) Raman spectra of LiCo1−yNiyO2. Chem Lett 24(10):889–890CrossRefGoogle Scholar
  49. 49.
    Okumura T, Yamaguchi Y, Shikano M, Kobayashi H (2012) Correlation of lithium-ion distribution and X-ray absorption near-edge structure in O3- and O2-lithium cobalt oxides from a first-principle calculation. J Mater Chem 22(33):17340CrossRefGoogle Scholar
  50. 50.
    Rosolen JM, Ballirano P, Berrettoni M, Decker F, Gregorkiewitz M (1997) Structural assessment of the electrochemical performance of LixCoO2 membrane electrodes by X-ray diffraction and absorption refinements. Ionics (Kiel) 3(5-6):345–355CrossRefGoogle Scholar
  51. 51.
    Laubach S, Laubach S, Schmidt PC, Ensling D, Schmid S, Jaegermann W, Thißen A, Nikolowski K, Ehrenberg H (2009) Changes in the crystal and electronic structure of LiCoO2 and LiNiO2 upon Li intercalation and de-intercalation. Phys Chem Chem Phys 11(17):3278CrossRefGoogle Scholar
  52. 52.
    Hertz JT, Huang Q, McQueen T, Klimczuk T, Bos JWG, Viciu L, Cava RJ (2008) Magnetism and structure of Li x CoO 2 and comparison to Na x CoO 2. Phys Rev B 77(7):075119CrossRefGoogle Scholar
  53. 53.
    Demirel S, Oz E, Altin S, Bayri A, Baglayan O, Altin E, Avci S (2017) Structural, magnetic, electrical and electrochemical properties of SrCoO25, Sr9Co2Mn5O21 and SrMnO3 compounds. Ceram Int 43(17):14818–14826CrossRefGoogle Scholar
  54. 54.
    Wiberg E (2001) Arnold F Holleman. Academic Press, Inorganic chemistryGoogle Scholar
  55. 55.
    Jensen J, Mackintosh AR (1991) Rare earth magnetism: structures and excitations. Clarendon Press, OxfordGoogle Scholar
  56. 56.
    Oz E, Demirel S, Altin S, Altin E, Baglayan O, Bayri A, Avci S (2018) Fabrication of Ca-Mn-Nb-O compounds and their structural, electrical, magnetic and thermoelectric properties. Mater Res Express 5(3):036304CrossRefGoogle Scholar
  57. 57.
    Hausbrand R, Cherkashinin G, Ehrenberg H, Gröting M, Albe K, Hess C, Jaegermann W (2015) Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: methodology, insights and novel approaches. Mater Sci Eng B 192:3–25CrossRefGoogle Scholar
  58. 58.
    Oudenhoven JFM, van Dongen T, Niessen RAH, de Croon MHJM, Notten PHL (2009) Low-pressure chemical vapor deposition of LiCoO[sub 2] thin films: a systematic investigation of the deposition parameters. J Electrochem Soc 156(5):D169CrossRefGoogle Scholar
  59. 59.
    Reimers JN, Dahn JR (1992) Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J Electrochem Soc 139(8):2091CrossRefGoogle Scholar
  60. 60.
    Berlinsky J, Unruh WG, McKinnon WR, Haering RR (1979) Theory of lithium ordering in LixTiS2. Solid State Commun 31(3):135–138CrossRefGoogle Scholar
  61. 61.
    Han SC, Singh SP, Hwang Y, Bae EG, Park BK, Sohn K-S, Pyo M (2012) Gadolinium-doped LiMn 2 O 4 cathodes in Li-ion batteries: understanding the stabilized structure and enhanced electrochemical kinetics. J Electrochem Soc 159(11):A1867–A1873CrossRefGoogle Scholar
  62. 62.
    Jia X, Yan M, Zhou Z, Chen X, Yao C, Li D, Chen D, Chen Y (2017) Nd-doped LiNi05Co02Mn03O2 as a cathode material for better rate capability in high voltage cycling of Li-ion batteries. Electrochim Acta 254:50–58CrossRefGoogle Scholar
  63. 63.
    Göktepe H (2013) Electrochemical performance of Yb-doped LiFePO4/C composites as cathode materials for lithium-ion batteries. Res Chem Intermed 39(7):2979–2987CrossRefGoogle Scholar
  64. 64.
    Meng X, Han B, Wang Y (2016) J Nan, Effects of samarium doping on the electrochemical performance of LiFePO4/C cathode material for lithium-ion batteries. Ceram Int 42(2):2599–2604CrossRefGoogle Scholar
  65. 65.
    Liu S, Zhao H, Tan M, Hu Y, Shu X, Zhang M, Chen B, Liu X (2017) Er-doped LiNi05Mn15O4 cathode material with enhanced cycling stability for lithium-ion batteries. Mater (Basel, Switzerland) 10:859CrossRefGoogle Scholar
  66. 66.
    Dolotko O, Senyshyn A, Mühlbauer MJ, Nikolowski K, Scheiba F, Ehrenberg H (2012) Fatigue process in Li-ion cells: an in situ combined neutron diffraction and electrochemical study. J Electrochem Soc 159(12):A2082–A2088CrossRefGoogle Scholar
  67. 67.
    Murdoch JY (2007) Diffusion and reactivity of solids. Publishers, Nova ScienceGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics DepartmentInonu UniversityMalatyaTurkey
  2. 2.IBTAMInonu UniversityMalatyaTurkey

Personalised recommendations