Advertisement

Free glycerol determination in biodiesel samples using palladium nanoparticles modified glassy carbon electrode associated with solid phase extraction

  • Gláucio Gualtieri HonórioEmail author
  • Jéssica Nogueira da Cunha
  • Kelly Leite dos Santos Castro Assis
  • Paula Fernandes de Aguiar
  • Débora França de Andrade
  • Cristiane Gimenes de Souza
  • Luiz Antonio d’Avila
  • Braulio S. Archanjo
  • Carlos A. Achete
  • Renata Norah Chaar Pradelle
  • Franck Turkovics
  • Rafael Serralvo Neto
  • Eliane D’Elia
Original Paper
  • 17 Downloads

Abstract

In this work, we developed a method for the quantification of free glycerol in biodiesel using electrochemical detection and solid phase extraction (SPE). SPE was performed using commercial stationary silica phase cartridges to isolate free glycerol from the combined glycerol (such as acylglycerols) and the methyl esters. The electrochemical method was performed by cyclic voltammetry in KOH solution using a glassy carbon electrode modified with Pd nanoparticles. The electrodeposition of palladium nanoparticles was optimized with a complete 32 factorial design with triplicate at the central point. The analytical performance of the method was evaluated in terms of linearity, limit of detection (LOD), limit of quantification (LOQ), precision (repeatability), and accuracy (recovery). The proposed method exhibits good linearity (R2 = 0.99525). The LOD and LOQ values were determined visually, the LOD was1.00 × 10−6% w/w, and the LOQ was 3.30 × 10−6% w/w, presenting better performance compared with other methods described in the literature. The precision was determined by the relative standard deviation (RSD%), and the values obtained were less than 5%. The recovery ranged between 95.8 and 101%. The proposed method proved to be efficient in the quantification of free glycerol in biodiesel, and the results correlate well with the reference method (GC). The results indicate that the method is presented as an alternative to costly and slow GC-based techniques.

Keywords

Biodiesel Free glycerol Palladium nanoparticles Cyclic voltammetry Solid phase extraction |Validation 

Notes

Funding information

This work was supported by FAPERJ (Foundation for Research Support of the State of Rio de Janeiro) and Peugeot (E-26/111.159/2014). Gláucio Gualtieri Honório would like to thank CNPq (National Council of Technological and Scientific Development of Brazil) for the doctoral fellowship support.

References

  1. 1.
    Lôbo IP, Ferreira SLC, Da Cruz RS (2009) Biodiesel: parâmetros de qualidade e métodos analíticos. Quim Nova 32(6):1596–1608CrossRefGoogle Scholar
  2. 2.
    Knothe GJ (2006) Analyzing biodiesel: standards and others methods. J Am Oil Chem Soc 83(10):823–833CrossRefGoogle Scholar
  3. 3.
    Monteiro MR, Ambrozin ARP, Lião LM, Ferreira AG (2008) Critical review on analytical methods for biodiesel characterization. Talanta 77(2):593–605CrossRefGoogle Scholar
  4. 4.
    Luetkmeyer T, Santos RM, Silva AB, Amado RS, Vieira EC, D’Elia E (2010) Analysis of free and total glycerol in biodiesel using an electrochemical assay based on a two-enzyme oxygen-electrode system. Electroanal 22(9):995–999CrossRefGoogle Scholar
  5. 5.
    Prados CP, Rezende DR, Batista LR, Alves MIR, Antoniosi Filho NR (2012) Simultaneous gas chromatrographic analysis of total esters, mono-, di- and triacylglycerides and free and total glycerol in methyl or ethil biodiesel. Fuel 96:476–481CrossRefGoogle Scholar
  6. 6.
    Kaluzny MA, Duncan LA, Merritt MV, Epps DE (1985) Rapid separation of lipid classes in high yield and purity using bonded phase columns. J Lipid Res 26:135–140PubMedGoogle Scholar
  7. 7.
    Perez-Camino MC, Moreda W, Cert A (1996) Determination of diacylglycerol isomers in vegetable oils by solid-phase extraction followed by gas chromatography on a polar phase. J Chromatogr A 721(2):305–314CrossRefGoogle Scholar
  8. 8.
    Andrade DF, Mazzei JL, d'Avila LA (2011) Separation of acylglycerols from biodiesel by high performance liquid chromatography and solid-phase extraction. Rev Virtual Quim 6:452–466Google Scholar
  9. 9.
    Pêgas MM, Amado RS, Vieira EC, D’Elia E (2010) Analysis of free glycerol in biodiesel using an electrochemical assay based on a two-enzyme platinum microelectrode system. J Appl Electrochem 40(11):2061–2063CrossRefGoogle Scholar
  10. 10.
    Habibi E, Razmi H (2012) Glycerol electrooxidation on Pd, Pt and Au nanoparticles supported on carbon ceramic electrode in alkaline media. Int J Hydrog Energy 37:16800–16809CrossRefGoogle Scholar
  11. 11.
    Palmas S, Da Pozzo A, Mascia M, Vacca A, Ricci PC, Matarrese R (2012) On the redox behaviour of glycerol at TiO2 electrodes. J Solid State Electrochem 16(7):2493–2502CrossRefGoogle Scholar
  12. 12.
    Pop Manea F, Radovan C, Dascalu D, Vaszilcsin N, Schoonman J (2012) Non-enzymatic electrochemical detection of glycerol on boron-doped diamond electrode. Analyst 137:641–647CrossRefGoogle Scholar
  13. 13.
    Barbosa TGG, Richter EM, Muñoz RAA (2012) Flow-injection pulsed-amperometric determination of free glycerol in biodiesel at a gold electrode. Electroanalysis 24(5):1160–1163CrossRefGoogle Scholar
  14. 14.
    Maruta AHET, Paixão RLSC (2012) Flow injection analysis of free glycerol in biodiesel using a copper electrode as an amperometric detector. Fuel 91(1):187–191CrossRefGoogle Scholar
  15. 15.
    Lee C (2007) Synthesis and electroactivity of carbon-nanomaterials-supported Pd nanoparticles from self-regulated reduction of sodium n-dodecyl sulfate. J Solid State Electrochem 11(9):1313–1317CrossRefGoogle Scholar
  16. 16.
    Kondratiev V, Babkova TA, Tolstopjatova EG (2013) PEDOT-supported Pd nanoparticles as a catalyst for hydrazine oxidation. J Solid State Electrochem 17:1621–1630CrossRefGoogle Scholar
  17. 17.
    Jiang F, Yao Z, Yue R, Xu J, Du Y, Yang P, Wang C (2013) Electrocatalytic activity of Pd nanoparticles supported on poly (3,4-ethilenedioxytiophene)-graphene hybrid for etanol electrooxidation. J Solid State Electrochem 17(4):1039–1047CrossRefGoogle Scholar
  18. 18.
    Moghaddam RB, Pickup PG (2015) Formic acid oxidation at palladium nanoparticles supported on polyaniline modified carbon fibre paper. J Solid State Electrochem 19(9):2843–2848CrossRefGoogle Scholar
  19. 19.
    Ilieva M, Tsakova V (2015) Temperature-treated polyaniline layers as supported for Pd catalysts: electrooxidation for glycerol in alkaline medium. J Solid State Electrochem 19(9):2811–2818CrossRefGoogle Scholar
  20. 20.
    Habibi B, Delnavaz N (2016) Electrooxidation of glycerol on nickel and nickel alloy (Ni-Cu and Ni-Co) nanoparticles in alkaline media. RSC Adv 6(38):31797–31806CrossRefGoogle Scholar
  21. 21.
    Ottoni CA, Ramos CED, da Silva SG, Spinacé EV, de Souza RFB, Neto AO (2016) Glycerol and methanol electro-oxidation at Pt-C/ITOunder alcaline condition. Electroanal 28(10):2552–2558CrossRefGoogle Scholar
  22. 22.
    Ottoni CA, de Souza RR, da Silva SG, Spinacé EV, de Souza RFB, Neto AO (2017) Performance of Pd electrocatalyst supported on a phisical mixture indium tin oxide-carbon for glycerol electrooxidation in alkaline media. Electroanal 29(4):960–964CrossRefGoogle Scholar
  23. 23.
    Galhardo TS, Gonçalves M, Mandelli D, Carvalho WA (2018) Glycerol valorization by base-free oxidation with air using platinum-nickel nanoparticles supported on activated carbon at catalyst prepared by a simple microwave polyol method. Clean Techn Environ Policy 20(9):2075–2088CrossRefGoogle Scholar
  24. 24.
    ASTM 6584-10A (2010) Standard test method for determination of total monoglyceride, total diglyceride, total triglyceride and free and total glycerin in B-100 biodiesel methyl esters by gas chromatography. ASTM International, West Conshohocken, PAGoogle Scholar
  25. 25.
    Honório GG, Azevedo GC, Matos MAC, De Oliveira MAL, Matos RC (2014) Use of boron-doped electrode pre-treated cathodically for the determination of trace metals in honey by differential pulse voltammetry. Food Control 36(1):42–48CrossRefGoogle Scholar
  26. 26.
    Brett CMA, Brett AMO (1998) Electroanalysis. Oxford chemistry primers, OxfordGoogle Scholar
  27. 27.
    Lanças FM (2004) Validação de métodos cromatográficos de análise. Editora RiMa, São CarlosGoogle Scholar
  28. 28.
    Kannam R, Kim AR, Yoo DJ (2014) Enhanced electrooxidation of methanol, ethylene-glycol, glycerol and xylitol over a polypyrrole/manganese oxyhydroxide/palladium nanocomposite electrode. J Appl Electrochem 44(8):893–902CrossRefGoogle Scholar
  29. 29.
    Yildiz G, Kadirgan F (1994) Electrocatalytic oxidation of glycerol I. Behavior of palladium electrode in alkaline medium. J Electrochem Soc 141:725–730CrossRefGoogle Scholar
  30. 30.
    Matsuoka K, Yasutoshi I, Abea T, Matsuoka M, Ogumi Z (2005) Electro-oxidation of methanol and ethylene glycol on platinum in alkaline solution: poisoning effects and product analysis. Electrochim Acta 51(6):1085–1090CrossRefGoogle Scholar
  31. 31.
    Ribani M, Botoli CBG, Collins CH, Jardim ICSF, Melo LFC (2004) Validação em métodos cromatográficos e eletroforéticos. Quím Nova 27(5):771–780CrossRefGoogle Scholar
  32. 32.
    Ballottin DPM, Paim LL, Stradiotto NR (2013) Determination of glycerol in biodiesel using a nickel (II) oxyhydroxide chemically modified electrode by cyclic voltammetry. Electroanalysis 25(7):1751–1755CrossRefGoogle Scholar
  33. 33.
    Li N, Zhou Q, Li X, Chu W, Adkins J, Zheng J (2014) Electrochemical detection of free glycerol in biodiesel using electrodes with single gold particles in highly ordered SiO2 cavities. Sensors Actuators B Chem 196:314–320CrossRefGoogle Scholar
  34. 34.
    Chen WC, Chen PY, Chou CH, Chang JL, Zen JM (2015) A nonenzymatic approach for selective and sensitive determination ofglycerol in biodiesel based on a PtRu-modified screen-printed edge band ultramicroelectrode. Electrochim Acta 153:295–299CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Gláucio Gualtieri Honório
    • 1
    Email author
  • Jéssica Nogueira da Cunha
    • 1
  • Kelly Leite dos Santos Castro Assis
    • 1
  • Paula Fernandes de Aguiar
    • 1
  • Débora França de Andrade
    • 1
  • Cristiane Gimenes de Souza
    • 2
  • Luiz Antonio d’Avila
    • 2
  • Braulio S. Archanjo
    • 3
  • Carlos A. Achete
    • 3
  • Renata Norah Chaar Pradelle
    • 4
  • Franck Turkovics
    • 4
  • Rafael Serralvo Neto
    • 4
  • Eliane D’Elia
    • 1
  1. 1.Institute of ChemistryFederal University of Rio de Janeiro, University CityRio de JaneiroBrazil
  2. 2.School of ChemistryFederal University of Rio de Janeiro, University CityRio de JaneiroBrazil
  3. 3.National Institute of MetrologyQuality and TechnologyDuque de CaxiasBrazil
  4. 4.PSA Groupe, PUC - Rio - ITUC Secretaria, Rua Marquês de São Vicente, 225, GáveaRio de JaneiroBrazil

Personalised recommendations