Study of thermodynamic properties of SrThF6(s) in SrF2-ThF4 system using solid state electrochemical cell method

  • Sumanta MukherjeeEmail author
  • S. Dash
Original Paper


The fission product strontium (Sr), after generation in the reactor due to fission of 233U, might exist as SrF2 in the molten fluoride medium of molten salt reactor (MSR) using fluoride carrier salts. The high temperature interactions between the strontium fluoride (SrF2) with the fertile fuel component and thorium fluoride (ThF4) leads to form single ternary compound SrThF6(s). The Gibbs energy of formation is the driving force for formation of any compound. In the present study, standard molar Gibbs energy of formation SrThF6(s) has been determined using an e.m.f. technique using CaF2(s) as solid electrolyte. Using the experimental thermodynamic data, to study the stability domain of SrThF6(s), the chemical potential diagram of Sr-Th-F-O system and ternary phase diagram of Sr-Th-F2 system have been calculated.


MSR SrThF6(s) E.M.F. Phase diagram Potential diagram 



The authors are thankful to Dr. S. Kannan, Head, Fuel Chemistry Division, for his constant support and encouragement. The authors are also thankful to Smt. Geeta Selke for X-Ray Diffraction Analysis for the samples.


  1. 1.
    Vijayan PK, Basak A, Dulera IV, Vaze KK, Basu S, Sinha RK (2015) Pramana J Phys 85(3):539–554CrossRefGoogle Scholar
  2. 2.
    Sinha RK (2011) Energy Procedia 7:34–50CrossRefGoogle Scholar
  3. 3.
    Blumberg R (1967) Maintenance development or molten-salt breeder reactors ORNL-TM-1859. Oak Ridge National LaboratoryGoogle Scholar
  4. 4.
    Perry AM, Bauman HF (1970) Nucl Appl Technol 8:208–215CrossRefGoogle Scholar
  5. 5.
    Briggs RB (1963) Molten Salt Reactor Program Semiannual Progress Report for Period Ending July 31, 1963, ORNL-3529. Oak Ridge National Laboratory, Oak Ridge, TennesseeGoogle Scholar
  6. 6.
    Mukherjee S, Dash S (2017) J Radioanal Nucl Chem 313:497–504CrossRefGoogle Scholar
  7. 7.
    Mukherjee S, Dash S, Mukerjee SK, Ramakumar KL (2019) Thorium—energy for the future. Springer, pp 393–402. CrossRefGoogle Scholar
  8. 8.
    Dawar R, Phapale S, Kolay S, Basu S, Mishra R, Tyagi AK (2018) J Alloys Compds 743:658–665CrossRefGoogle Scholar
  9. 9.
    Keller C, Salzer M (1967) J Inorg Nucl Chem 29:2925–2934CrossRefGoogle Scholar
  10. 10.
    Zhua X, Yanga J, Dastan D, Garmestani H, Fan R, Shi Z (2019) Composites Part A 125:105521CrossRefGoogle Scholar
  11. 11.
    Dastan D, Gosavi SW, Chaure NB (2015) Macromol Symp 347:81–86CrossRefGoogle Scholar
  12. 12.
    Yin X, Zhou W, Li J, Pin L, Wang Q, Wu F, Dastan D, Wang D, Garmestani H, Wang X, Ştefan Ţ (2019) J Alloys Compds 805:229–236CrossRefGoogle Scholar
  13. 13.
    Dastan D, Banpurkar A (2016) J Mater Sci Mater Electron 28(4):3851–3859CrossRefGoogle Scholar
  14. 14.
    Dastan D, Panahi SL, Yengntiwar AP, Banpurkar AG (2016) Adv Sci Lett 22(4):950–953CrossRefGoogle Scholar
  15. 15.
    SrThF6 Crystal Structure (Springer-Verlag GmbH, Heidelberg, © 2016
  16. 16.
    Rodriguez-Carvajal J (2000) Fullprof 2000 Version 1.6, Laboratoire Leon Brillouin. Gifsur Yvette, FranceGoogle Scholar
  17. 17.
    Dastan D, Panahi SL, Chaure NB (2016) J Mater Sci Mater Electron 27:12291–12296CrossRefGoogle Scholar
  18. 18.
    Yin X, Zhou W, Li J, Pin L, Wang Q, Wang D, Wu F, Dastan D, Garmestani H, Shi Z, Ştefan Ţ (2019) J Mater Sci Mater Electron 30:14687–14694CrossRefGoogle Scholar
  19. 19.
    Dastan D (2015) J Atomic Molecul. Condensate Nano Phys 2(2):109–114Google Scholar
  20. 20.
    Panahi SL, Dastan D, Chaure NB (2016) Adv Sci Lett 22(4):941–944CrossRefGoogle Scholar
  21. 21.
    Dastan D (2017) Appl Phys A Mater Sci Process 123(699):1–13Google Scholar
  22. 22.
    Momma K, Izumi F (2011) J Appl Crystallogr 44:1272–1276CrossRefGoogle Scholar
  23. 23.
    Mukherjee S, Dash S, Mukerjee SK, Ramakumar KL (2015) J Nucl Mater 465:604–614CrossRefGoogle Scholar
  24. 24.
    Mukherjee S, Dash S (2018) J Fluor Chem 212:17–25CrossRefGoogle Scholar
  25. 25.
    Barin I, Knacke O (1973) Thermochemical properties of inorganic substances. Springer - Verlag, New YorkGoogle Scholar
  26. 26.
    Lukas HL, Fries SG, Sundman B (2007) Computational thermodynamics, the Calphad method. Cambridge University PressGoogle Scholar
  27. 27.
    Kaufman L, Bernstein H (1970) Computer calculation of phase diagrams. Academic Press, New YorkGoogle Scholar
  28. 28.
    Pelton AD, Chartrand P, Eriksson G (2001) Metall. Mater Trans A 32A(6):1409–1416CrossRefGoogle Scholar
  29. 29.
    FactSage Version 6.3, “The integrated Thermodynamic Data Bank System”, GTT Technologies. GmbH, Germany, pp 1976–2006Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Fuel Chemistry DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Homi Bhabha National Institute (HBNI)Bhabha Atomic Research CentreMumbaiIndia

Personalised recommendations