Journal of Solid State Electrochemistry

, Volume 23, Issue 10, pp 2825–2834 | Cite as

Thermodynamics of graphite intercalation binary alloys of Li-Na, Na-K, and Li-K from van der Waals density functionals

  • Tao Song
  • Yaoping Xie
  • Yigang Chen
  • Haibo GuoEmail author
Original Paper


Graphite may store lithium or potassium, but not sodium, in its interlayer space under ambient conditions. It is, however, unclear whether binary alkali alloys of Li-Na, Li-K, and Na-K may substitute pure Li or K to form binary alkali alloy-graphite intercalation compounds. We investigate thermodynamics of the binary alloy-graphite intercalation compounds using density functional theory with van der Waals density functionals. We find Li-rich co-intercalation compounds and K-rich ones are associated with negative formation energies, and the Na-K alloy has the broadest domain of co-intercalation (approximately up to 36% Na). Because of convexity of the formation-energy functions, these compounds are metastable and tend to decompose even when formation energies are negative. Na metal is among the decomposition products. Binary Li-K alloys in graphite form segregated phases of LiC6 and KC8, and this allows one to fabricate Li-K mixed-ion batteries using graphite anodes, whereas Li-Na and Na-K alloys are thermodynamically unfavorable. The study highlights the importance of convexity of formation-energy functions in thermodynamics of alloy-graphite intercalation compounds.


Graphite intercalation compound Alkali metals Li-ion battery anode Density functional theory calculations 


Funding information

This work is supported by Doctoral Fund of Ministry of Education of China (20133108120021), the National Natural Science Foundation of China for Youths (51302166), and Municipal Natural Science foundation of Shanghai. The computations are performed on Compmat cluster and Ziqiang4000 supercomputer of the High Performance Computing Center of Shanghai University.

Supplementary material

10008_2019_4383_MOESM1_ESM.docx (1.3 mb)
ESM 1 (DOCX 942 kb)


  1. 1.
    Lewis NS (2011) Powering the planet. MRS Bull 32:808–820CrossRefGoogle Scholar
  2. 2.
    Bruce D, Haresh K, Jean-Marie T (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935CrossRefGoogle Scholar
  3. 3.
    Goodenough JB (2015) Energy storage materials: a perspective. Energy Storage Mater 1:158–161CrossRefGoogle Scholar
  4. 4.
    Chen R, Luo R, Huang Y, Wu F, Li L (2016) Advanced high energy eensity secondary batteries with multi-electron reaction materials. Adv Sci 3(10):1600051CrossRefGoogle Scholar
  5. 5.
    Manthiram A (2011) Materials challenges and opportunities of lithium ion batteries. J Phys Chem Lett 2(3):176–184CrossRefGoogle Scholar
  6. 6.
    Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176PubMedCrossRefGoogle Scholar
  7. 7.
    Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603CrossRefGoogle Scholar
  8. 8.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Tarascon JM (2010) Is lithium the new gold? Nat Chem 2(6):510PubMedCrossRefGoogle Scholar
  10. 10.
    Hong SY, Kim Y, Park Y, Choi A, Choi N-S, Lee KT (2013) Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ Sci 6(7):2067CrossRefGoogle Scholar
  11. 11.
    Liu Y, Artyukhov VI, Liu M, Harutyunyan AR, Yakobson BI (2013) Feasibility of lithium storage on graphene and its derivatives. J Phys Chem Lett 4(10):1737–1742PubMedCrossRefGoogle Scholar
  12. 12.
    Xi X-T, Li W-H, Hou B-H, Yang Y, Gu Z-Y, Wu X-L (2019) Dendrite-free lithium anode enables the lithium//graphite dual-ion battery with much improved cyclic stability. ACS Appl Energy Mater 2(1):201–206CrossRefGoogle Scholar
  13. 13.
    Li W-H, Ning Q-L, Xi X-T, Hou B-H, Guo J-Z, Yang Y, Chen B, Wu X-L (2019) Highly improved cycling stability of anion de-/intercalation in the graphite cathode for dual-ion batteries. Adv Mater 31(4):1804766CrossRefGoogle Scholar
  14. 14.
    Wedepohl KH (1995) The composition of the continental Crust. Geochim Cosmochim Acta 59(7):1217–1232CrossRefGoogle Scholar
  15. 15.
    Wang LP, Yu L, Wang X, Srinivasan M, Xu ZJ (2015) Recent developments in electrode materials for sodium-ion batteries. J Mater Chem A 3(18):9353–9378CrossRefGoogle Scholar
  16. 16.
    Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46(12):3529–3614PubMedCrossRefGoogle Scholar
  17. 17.
    Wang Y-Y, Hou B-H, Guo J-Z, Ning Q-L, Pang W-L, Wang J, Lü C-L, Wu X-L (2018) An ultralong lifespan and low-temperature workable sodium-ion full battery for stationary energy storage. Adv Energy Mater 8(18):1703252CrossRefGoogle Scholar
  18. 18.
    Pramudita JC, Sehrawat D, Goonetilleke D, Sharma N (2017) An initial review of the status of electrode materials for potassium-ion batteries. Adv Energy Mater 7(24):1602911CrossRefGoogle Scholar
  19. 19.
    Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682PubMedCrossRefGoogle Scholar
  20. 20.
    Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23(8):947–958CrossRefGoogle Scholar
  21. 21.
    Muralidharan N, Carter R, Oakes L, Cohn AP, Pint CL (2016) Strain engineering to modify the electrochemistry of energy storage electrodes. Sci Rep 6(1):27542PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang C (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5(1):4033PubMedCrossRefGoogle Scholar
  23. 23.
    Liu Y, Merinov BV, Goddard WA 3rd (2016) Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals. Proc Natl Acad Sci U S A 113(14):3735–3739PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Moriwake H, Kuwabara A, Fisher CAJ, Ikuhara Y (2017) Why is sodium-intercalated graphite unstable? RSC Adv 7(58):36550–36554CrossRefGoogle Scholar
  25. 25.
    Dresselhaus MS, Dresselhaus G (2002) Intercalation compounds of graphite. Adv Phys 51(1):1–186CrossRefGoogle Scholar
  26. 26.
    Lücking F, Köser H, Jank M, Ritter A (1998) Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution. Water Res 32(9):2607–2614CrossRefGoogle Scholar
  27. 27.
    Chambers A, Park C, Baker RM, Rodriguez N (1998) Hydrogen storage in graphite nanofibers. J Phys Chem B 102(22):4253–4256CrossRefGoogle Scholar
  28. 28.
    Noel M, Santhanam R (1998) Electrochemistry of graphite intercalation compounds. J Power Sources 72(1):53–65CrossRefGoogle Scholar
  29. 29.
    Sim HS, Kim TA, Lee KH, Park M (2012) Preparation of graphene nanosheets through repeated supercritical carbon dioxide process. Mater Lett 89:343–346CrossRefGoogle Scholar
  30. 30.
    Knieke C, Berger A, Voigt M, Taylor RNK, Röhrl J, Peukert W (2010) Scalable production of graphene sheets by mechanical delamination. Carbon 48(11):3196–3204CrossRefGoogle Scholar
  31. 31.
    Pruvost S, Hérold C, Hérold A, Lagrange P (2003) On the great difficulty of intercalating lithium with a second element into graphite. Carbon 41(6):1281–1289CrossRefGoogle Scholar
  32. 32.
    Basu S, Zeller C, Flanders PJ, Fuerst CD, Johnson WD (1979) Synthesis and properties of lithium-graphite intercalation compounds. Mater Sci Eng 38(3):275–283CrossRefGoogle Scholar
  33. 33.
    Antoine L, Gachon JC, Guerard D (1998) Intercalation of sodium-potassium alloys into graphite. MRS Proc 548:49CrossRefGoogle Scholar
  34. 34.
    Iñiguez M, Alonso J (2000) Density functional-pseudopotential approach to the heat of formation in alloys of alkali metals. J Phys F Met Phys 11:2045CrossRefGoogle Scholar
  35. 35.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138CrossRefGoogle Scholar
  36. 36.
    Jones RO (2015) Density functional theory: its origins, rise to prominence, and future. Rev Mod Phys 87(3):897–923CrossRefGoogle Scholar
  37. 37.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186CrossRefGoogle Scholar
  38. 38.
    Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50CrossRefGoogle Scholar
  39. 39.
    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B Condens Matter 50(24):17953–17979PubMedCrossRefGoogle Scholar
  40. 40.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775CrossRefGoogle Scholar
  41. 41.
    Klimeš J, Bowler DR, Michaelides A (2010) Chemical accuracy for the van der Waals density functional. J Phys Condens Matter 22(2):022201PubMedCrossRefGoogle Scholar
  42. 42.
    Wang Z, Selbach SM, Grande T (2014) Van der Waals density functional study of the energetics of alkali metal intercalation in graphite. RSC Adv 4(8):3973–3983CrossRefGoogle Scholar
  43. 43.
    Nobuhara K, Nakayama H, Nose M, Nakanishi S, Iba H (2013) First-principles study of alkali metal-graphite intercalation compounds. J Power Sources 243:585–587CrossRefGoogle Scholar
  44. 44.
    Okamoto Y (2013) Density functional theory calculations of alkali metal (Li, Na, and K) graphite intercalation compounds. J Phys Chem C 118:16–19CrossRefGoogle Scholar
  45. 45.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192CrossRefGoogle Scholar
  46. 46.
    Klimes J, Bowler D, Michaelides A (2011) Van der Waals density functionals applied to solids. Phys Rev B 83(19):195131CrossRefGoogle Scholar
  47. 47.
    Dion M, Rydberg H, SchröDer E, Langreth DC, Lundqvist BI (2004) Van der Waals density functional for general geometries. Phys Rev Lett 92(24):246401PubMedCrossRefGoogle Scholar
  48. 48.
    Román-Pérez G, Soler JM (2009) Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. Phys Rev Lett 103(9):096102PubMedCrossRefGoogle Scholar
  49. 49.
    Trucano P, Chen R (1975) Structure of graphite by neutron diffraction. Nature 258(5531):136–137CrossRefGoogle Scholar
  50. 50.
    Guerard D, Herold A (1975) Intercalation of lithium into graphite and other carbons. Carbon 13(4):337–345CrossRefGoogle Scholar
  51. 51.
    Nixon DE, Parry GS (1969) The expansion of the carbon-carbon bond length in potassium graphites. J Phys C Solid State Phys 2(10):1732–1741CrossRefGoogle Scholar
  52. 52.
    Zhao J, Zou X, Zhu Y, Xu Y, Wang C (2016) Electrochemical intercalation of potassium into graphite. Adv Funct Mater 26(44):8103–8110CrossRefGoogle Scholar
  53. 53.
    King HW (1966) Quantitative size-factors for metallic solid solutions. J Mater Sci 1(1):79–90CrossRefGoogle Scholar
  54. 54.
    Herold A, Billaud D, Guerard D, Lagrange P (1977) Action compétitive de deux métaux Alcalins sur le graphite. Mater Sci Eng 31:25–28CrossRefGoogle Scholar
  55. 55.
    Xue L, Gao H, Zhou W, Xin S, Park K, Li Y, Goodenough JB (2016) Liquid K-Na alloy anode enables dendrite-free potassium batteries. Adv Mater 28(43):9608–9612PubMedCrossRefGoogle Scholar
  56. 56.
    Xu Z, Lv X, Chen J, Jiang L, Lai Y, Jie L (2016) Dispersion-corrected DFT investigation on defect chemistry and potassium migration in potassium-graphite intercalation compounds for potassium ion batteries anode materials. Carbon 107:885–894CrossRefGoogle Scholar
  57. 57.
    Ye H, Zheng Z-J, Yao H-R, Liu S-C, Zuo T-T, Wu X-W, Yin Y-X, Li N-W, Gu J-J, Cao F-F, Guo Y-G (2019) Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries. Angew Chem 131(4):1106–1111CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringShanghai UniversityShanghaiChina

Personalised recommendations