Journal of Solid State Electrochemistry

, Volume 23, Issue 10, pp 2785–2792 | Cite as

Internal in situ gel polymer electrolytes for high-performance quasi-solid-state lithium ion batteries

  • Dingsheng Shao
  • Xianyou WangEmail author
  • Xiaolong Li
  • Kaili Luo
  • Li Yang
  • Lei Liu
  • Hong Liu
Original Paper


The performance of solid-state lithium ion battery mainly depends on the performance of the electrolyte and the interface between the electrolyte and the electrodes. Improving the interface contact between the electrolyte and the electrodes is vital for development of solid-state battery. In this work, the gel polymer electrolytes are prepared by thermal initiation and used as quasi-solid-state electrolytes in the LiFePO4/Li battery. In order to enhance the interface properties between the electrolyte and the electrodes, we adopt in situ polymerization strategy to form electrolyte in the inner of the battery. The scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and electrochemical impedance spectroscopy (EIS) are used to characterize the physico-chemical and electrochemical performance of gel polymer electrolytes. The final results show that the strategy of in situ polymerization of electrolyte in the inner of the battery can significantly improve the contact between the electrodes and electrolyte. The as-prepared quasi-solid-state battery shows lower interface resistance and significantly improved cycle performance. Therefore, the strategy of in situ polymerization of electrolyte in the inner of the battery provides a useful idea for solving the interface problem of quasi-solid-state batteries.


Gel polymer electrolytes Thermal initiation In situ polymerization Interface contact Quasi-solid-state lithium ion battery 


Funding information

This work is supported financially by the Natural Science Foundation of Hunan Province (nos. 2015JJ2137 and 2015JJ6103) and Key Project of Strategic New Industry of Hunan Province (nos. 2016GK4030 and 2016GK4005).


  1. 1.
    Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657CrossRefGoogle Scholar
  2. 2.
    Cho YG, Hwang C, Cheong DS, Kim YS, Song HK (2018) Gel/solid polymer electrolytes characterized by in situ gelation or polymerization for electrochemical energy systems. Adv Mater 31(20):1804909CrossRefGoogle Scholar
  3. 3.
    Zhang J, Zhao J, Yue L, Wang Q, Chai J, Liu Z, Zhou X, Li H, Guo Y, Cui G, Chen L (2015) Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries. Adv Energy Mater 5(24):1501082CrossRefGoogle Scholar
  4. 4.
    Kim JY, Shin DO, Kim S-H, Lee JH, Kim KM, Oh J, Kim J, Lee MJ, Yang Y-S, Lee S-Y, Kim JY, Lee Y-G (2018) Reversible thixotropic gel electrolytes for safer and shape-versatile lithium-ion batteries. J Power Sources 401:126–134CrossRefGoogle Scholar
  5. 5.
    Yue L, Ma J, Zhang J, Zhao J, Dong S, Liu Z, Cui G, Chen L (2016) All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials 5:139–164CrossRefGoogle Scholar
  6. 6.
    Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J (2017) Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33:363–386CrossRefGoogle Scholar
  7. 7.
    Xia S, Wu X, Zhang Z, Cui Y, Liu W (2018) Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 5(4):753–785CrossRefGoogle Scholar
  8. 8.
    Rettenwander D, Welzl A, Pristat S, Tietz F, Taibl S, Redhammer GJ, Fleig J (2016) A microcontact impedance study on NASICON-type Li1+xAlxTi2−x(PO4)3 (0 ≤ x ≤ 0.5) single crystals. J Mater Chem A 4(4):1506–1513CrossRefGoogle Scholar
  9. 9.
    Kazyak E, Chen K-H, Wood KN, Davis AL, Thompson T, Bielinski AR, Sanchez AJ, Wang X, Wang C, Sakamoto J, Dasgupta NP (2017) Atomic layer deposition of the solid electrolyte Garnet Li7La3Zr2O12. Chem Mater 29(8):3785–3792CrossRefGoogle Scholar
  10. 10.
    Huo H, Chen Y, Luo J, Yang X, Guo X, Sun X (2019) Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries. Adv Energy Mater 9(17):1804004CrossRefGoogle Scholar
  11. 11.
    Tao C, Gao M-H, Yin B-H, Li B, Huang Y-P, Xu G, Bao J-J (2017) A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries. Electrochim Acta 257:31–39CrossRefGoogle Scholar
  12. 12.
    Li W, Li Z, Yang C, Xiao Q, Lei G, Ding Y (2016) A capsule-type gelled polymer electrolyte for rechargeable lithium batteries. RSC Adv 6(53):47833–47839CrossRefGoogle Scholar
  13. 13.
    Bi H, Sui G, Yang X (2014) Studies on polymer nanofibre membranes with optimized core–shell structure as outstanding performance skeleton materials in gel polymer electrolytes. J Power Sources 267:309–315CrossRefGoogle Scholar
  14. 14.
    Long L, Wang S, Xiao M, Meng Y (2016) Polymer electrolytes for lithium polymer batteries. J Mater Chem A 4(26):10038–10069CrossRefGoogle Scholar
  15. 15.
    Chakraborty P, Das S, Nandi AK (2019) Conducting gels: a chronicle of technological advances. Prog Polym Sci 88:189–219CrossRefGoogle Scholar
  16. 16.
    Zeng XX, Yin YX, Li NW, Du WC, Guo YG, Wan LJ (2016) Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid li metal batteries. J Am Chem Soc 138(49):15825–15828PubMedCrossRefGoogle Scholar
  17. 17.
    Li W, Pang Y, Liu J, Liu G, Wang Y, Xia Y (2017) A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Adv 7(38):23494–23501CrossRefGoogle Scholar
  18. 18.
    Zhang MY, Li MX, Chang Z, Wang YF, Gao J, Zhu YS, Wu YP, Huang W (2017) A sandwich PVDF/HEC/PVDF gel polymer electrolyte for lithium ion battery. Electrochim Acta 245:752–759CrossRefGoogle Scholar
  19. 19.
    Xia Y, Wang X, Xia X, Xu R, Zhang S, Wu J, Liang Y, Gu C, Tu J (2017) A newly designed composite gel polymer electrolyte based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) for enhanced solid-state lithium-sulfur batteries. Chem 23(60):15203–15209CrossRefGoogle Scholar
  20. 20.
    Yang W, Yang W, Feng J, Ma Z, Shao G (2016) High capacity and cycle stability rechargeable lithium–sulfur batteries by sandwiched gel polymer electrolyte. Electrochim Acta 210:71–78CrossRefGoogle Scholar
  21. 21.
    Song A, Huang Y, Zhong X, Cao H, Liu B, Lin Y, Wang M, Li X (2017) Gel polymer electrolyte with high performances based on pure natural polymer matrix of potato starch composite lignocellulose. Electrochim Acta 245:981–992CrossRefGoogle Scholar
  22. 22.
    Cheng X, Pan J, Zhao Y, Liao M, Peng H (2018) Gel polymer electrolytes for electrochemical energy storage. Adv Energy Mater 8(7):1702184CrossRefGoogle Scholar
  23. 23.
    Chen G, Zhang F, Zhou Z, Li J, Tang Y (2018) A flexible dual-ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Adv Energy Mater 8(25):1801219CrossRefGoogle Scholar
  24. 24.
    Zuo TT, Shi Y, Wu XW, Wang PF, Wang SH, Yin YX, Wang WP, Ma Q, Zeng XX, Ye H, Wen R, Guo YG (2018) Constructing a stable lithium metal-gel electrolyte interface for quasi-solid-state lithium batteries. ACS Appl Mater Interfaces 10(36):30065–30070PubMedCrossRefGoogle Scholar
  25. 25.
    Wang Y, Qiu J, Peng J, Li J, Zhai M (2017) One-step radiation synthesis of gel polymer electrolytes with high ionic conductivity for lithium-ion batteries. J Mater Chem A 5(24):12393–12399CrossRefGoogle Scholar
  26. 26.
    Zhou D, He Y-B, Liu R, Liu M, Du H, Li B, Cai Q, Yang Q-H, Kang F (2015) In situ synthesis of a hierarchical all-solid-state electrolyte based on nitrile materials for high-performance lithium-ion batteries. Adv Energy Mater 5(15):1500353CrossRefGoogle Scholar
  27. 27.
    Zhou D, He Y-B, Cai Q, Qin X, Li B, Du H, Yang Q-H, Kang F (2014) Investigation of cyano resin-based gel polymer electrolyte: in situ gelation mechanism and electrode–electrolyte interfacial fabrication in lithium-ion battery. J Mater Chem A 2(47):20059–20066CrossRefGoogle Scholar
  28. 28.
    Ha H-J, Kwon YH, Kim JY, Lee S-Y (2011) A self-standing, UV-cured polymer networks-reinforced plastic crystal composite electrolyte for a lithium-ion battery. Electrochim Acta 57:40–45CrossRefGoogle Scholar
  29. 29.
    Duan H, Yin Y-X, Zeng X-X, Li J-Y, Shi J-L, Shi Y, Wen R, Guo Y-G, Wan L-J (2018) In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries. Energy Storage Materials 10:85–91CrossRefGoogle Scholar
  30. 30.
    Nirmale TC, Karbhal I, Kalubarme RS, Shelke MV, Varma AJ, Kale BB (2017) Facile synthesis of unique cellulose triacetate based flexible and high performance gel polymer electrolyte for lithium ion batteries. ACS Appl Mater Interfaces 9(40):34773–34782PubMedCrossRefGoogle Scholar
  31. 31.
    Yang C, Fu K, Zhang Y, Hitz E, Hu L (2017) Protected lithium-metal anodes in batteries: from liquid to solid. Adv Mater 29(36):1701169CrossRefGoogle Scholar
  32. 32.
    Niu C, Zhang M, Chen G, Cao B, Shi J, Du J, Chen Y (2018) An effectively inhibiting lithium dendrite growth in-situ-polymerized gel polymer electrolyte. Electrochim Acta 283:349–356CrossRefGoogle Scholar
  33. 33.
    Li X, Qian K, He Y-B, Liu C, An D, Li Y, Zhou D, Lin Z, Li B, Yang Q-H, Kang F (2017) A dual-functional gel-polymer electrolyte for lithium ion batteries with superior rate and safety performances. J Mater Chem A 5(35):18888–18895CrossRefGoogle Scholar
  34. 34.
    Lei B, Yang J, Xu Z, Su S, Wang D, Jiang J, Feng J (2018) A fumed alumina induced gel-like electrolyte for great performance improvement of lithium-sulfur batteries. Chem Commun (Camb) 54(96):13567–13570CrossRefGoogle Scholar
  35. 35.
    Lv P, Li Y, Wu Y, Liu G, Liu H, Li S, Tang C, Mei J, Li Y (2018) Robust succinonitrile-based gel polymer electrolyte for lithium-ion batteries withstanding mechanical folding and high temperature. ACS Appl Mater Interfaces 10(30):25384–25392PubMedCrossRefGoogle Scholar
  36. 36.
    Fan W, Li NW, Zhang X, Zhao S, Cao R, Yin Y, Xing Y, Wang J, Guo YG, Li C (2018) A dual-salt gel polymer electrolyte with 3D cross-linked polymer network for dendrite-free lithium metal batteries. Adv Sci (Weinh) 5(9):1800559CrossRefGoogle Scholar
  37. 37.
    Choi N-S, Park J-K (2009) A comparative study of coordination between host polymers and Li+ ions in UV-cured gel polymer electrolytes. Solid State Ionics 180(20-22):1204–1208CrossRefGoogle Scholar
  38. 38.
    Yarmolenko OV, Khatmullina KG, Tulibaeva GZ, Bogdanova LM, Shestakov AF (2012) Towards the mechanism of Li+ ion transfer in the net solid polymer electrolyte based on polyethylene glycol diacrylate–LiClO4. J Solid State Electrochem 16(10):3371–3381CrossRefGoogle Scholar
  39. 39.
    Wang Y, Fu L, Shi L, Wang Z, Zhu J, Zhao Y, Yuan S (2019) Gel polymer electrolyte with high Li(+) transference number enhancing the cycling stability of lithium anodes. ACS Appl Mater Interfaces 11(5):5168–5175PubMedCrossRefGoogle Scholar
  40. 40.
    Buss HG, Chan SY, Lynd NA, McCloskey BD (2017) Nonaqueous polyelectrolyte solutions as liquid electrolytes with high lithium ion transference number and conductivity. ACS Energy Lett 2(2):481–487CrossRefGoogle Scholar
  41. 41.
    Nag A, Ali MA, Singh A, Vedarajan R, Matsumi N, Kaneko T (2019) N-Boronated polybenzimidazole for composite electrolyte design of highly ion conducting pseudo solid-state ion gel electrolytes with a high Li-transference number. J Mater Chem A 7(9):4459–4468CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Dingsheng Shao
    • 1
  • Xianyou Wang
    • 1
    Email author
  • Xiaolong Li
    • 1
  • Kaili Luo
    • 1
  • Li Yang
    • 1
  • Lei Liu
    • 1
  • Hong Liu
    • 1
  1. 1.National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, National Base for International Science & Technology Cooperation, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of ChemistryXiangtan UniversityXiangtanChina

Personalised recommendations