Characterization and electrochemical studies on poly(1-naphthylamine)-graphene oxide nanocomposites prepared by in situ chemical oxidative polymerization

  • Femina Kanjirathamthadathil Saidu
  • Alex Joseph
  • Eldhose Vadakkechalil Varghese
  • George Vazhathara ThomasEmail author
Original Paper


Present work demonstrates the synthesis of novel poly(1-naphthylamine)-graphene oxide (PNA–GO) nanocomposites by the polymerization of NA in GO dispersion. Here, GO was synthesized by greener oxidation of graphite without using sodium nitrate. The characterization of PNA–GO nanocomposites by different analytical techniques indicates that structural, thermal, and electrochemical properties are dependent on GO content. Observation of interconnected fibrous arrangement of PNA in PNA–GO nanocomposites suggests the templating interaction of GO on PNA. Electrochemical studies reveal the improvement in capacitance, cyclic stability, and charge transfer characteristics of PNA–GO nanocomposite offering a low-cost and highly processable electrode material.

Graphical abstract

In situ synthesis and electrochemical studies on poly(1-naphthylamine)-graphene oxide nanocomposites.


Nanocomposite Poly(1-naphthylamine) Intercalation Polymerization 



The authors would like to thank the SAIF, STIC, CUSAT, and Kerala, India, for characterization facilities.

Funding information

The authors would like to thank the financial assistance to Femina K.S. granted by the University Grants Commission, Govt. of India under Faculty Development Programme (Grant No. FIP/12th Plan/KLMG 009 TF 12 dated 20 /04/2017) and to Alex Joseph by the Kerala State Council for Science, Technology and Environment (KSCSTE) Thiruvananthapuram, Kerala, India under SARD scheme (Grant No.002/SARD/2015/KSCSTE). 

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Zhang Q, Uchaker E, Candelaria SL, Cao G (2013) Nanomaterials for energy conversion and storage. Chem Soc Rev 42(7):3127–3171CrossRefGoogle Scholar
  2. 2.
    Pan L, Qiu H, Dou C, Li Y, Pu L, Xu J, Shi Y (2010) Conducting polymer nanostructures: Template synthesis and applications in energy storage. Int. J. Mol. Sci. 11(7):2636–2657CrossRefGoogle Scholar
  3. 3.
    Libich J, Máca J, Vondrák J, Čech O, Sedlaříková M (2018) Supercapacitors: Properties and applications. J Energy Storage 17:224–227CrossRefGoogle Scholar
  4. 4.
    Chen X, Paul R, Dai L (2017) Carbon-based supercapacitors for efficient energy storage. Natl Sci Rev 4(3):453–489CrossRefGoogle Scholar
  5. 5.
    Wang H, Hao Q, Yang X, Lu L, Wang X (2009) Graphene oxide doped polyaniline for supercapacitors. Electrochem commun 11(6):1158–1161CrossRefGoogle Scholar
  6. 6.
    Chen J, Li C, Shi G (2013) Graphene Materials for Electrochemical Capacitors. J Phys Chem Lett 4(8):1244–1253CrossRefGoogle Scholar
  7. 7.
    Bose S, Kuila T, Mishra AK, Rajasekar R, Kim NH, Lee JH (2012) Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J Mater Chem 22(3):767–784CrossRefGoogle Scholar
  8. 8.
    Kim H, Popov BN (2003) Synthesis and characterization of MnO2-based mixed oxides as supercapacitors. J Electrochem Soc 150(3):D56–D62. CrossRefGoogle Scholar
  9. 9.
    Khomenko V, Frackowiak E, Barsukov VZ, Béguin F (2006) Development of supercapacitors based on conducting polymers bt - New carbon based materials for electrochemical energy storage systems: batteries, supercapacitors and fuel Cells. Springer Netherlands, Dordrecht, pp 41–50CrossRefGoogle Scholar
  10. 10.
    Shown I, Ganguly A, Chen L-C, Chen K-H (2015) Conducting polymer-based flexible supercapacitor. Energy Sci Eng 3(1):2–26CrossRefGoogle Scholar
  11. 11.
    Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5(25):12653–12672CrossRefGoogle Scholar
  12. 12.
    Kim J, Park S, Kim S (2013) Capacitance behaviors of Polyaniline/Graphene Nanosheet Composites Prepared by Aniline Chemical Polymerization. Carbon Lett 14(1):51–54CrossRefGoogle Scholar
  13. 13.
    Zhang X, Wang J, Liu J, Wu J, Chen H, Bi H (2017) Design and preparation of a ternary composite of graphene oxide/carbon dots/polypyrrole for supercapacitor application: Importance and unique role of carbon dots. Carbon N Y 115:134–146CrossRefGoogle Scholar
  14. 14.
    Xu Q, Razal JM, Chen J et al (2018) Development of Graphene Oxide/Polyaniline Inks for High Performance Flexible Microsupercapacitors via Extrusion Printing. Adv Funct Mater 28:1706592–1706604CrossRefGoogle Scholar
  15. 15.
    Zhang K, Zhang LL, Zhao XS, Wu J (2010) Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22(4):1392–1401CrossRefGoogle Scholar
  16. 16.
    Hu X, Yu Y, Bai H, Zhang X, Wang Y, Zhou J (2019) Synthesis of graphene oxide with superhydrophilicity and well-defined sheet size distribution. Mater Test 61(3):273–276CrossRefGoogle Scholar
  17. 17.
    Dimiev AM, Tour JM (2014) Mechanism of graphene oxide formation. ACS Nano 8(3):3060–3068CrossRefGoogle Scholar
  18. 18.
    Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: Synthesis, properties, and applications. Adv Mater 22(35):3906–3924CrossRefGoogle Scholar
  19. 19.
    Parwaz Khan AA, Khan A, Asiri AM (2018) Graphene and Graphene Oxide Polymer Composite for Biosensors Applications. In: Khan A, Jawaid M, Parwaz Khan AA, Asiri AM (eds) Electrically conductive polymer and polymer composites, pp 93–112CrossRefGoogle Scholar
  20. 20.
    Shaffie KA (2000) Preparation and characterization of polynaphthylamine (PNA) as a novel conducting polymer. J Appl Polym Sci 77(5):988–992CrossRefGoogle Scholar
  21. 21.
    Huang SS, Li J, Lin HG, Yu RQ (1995) Electropolymerization of 1-naphthylamine and the structure of the polymer film. Microchim Acta 117(3-4):145–152CrossRefGoogle Scholar
  22. 22.
    Ciric-Marjanovic G, Marjanović B, Stamenković V et al (2002) Structure and stereochemistry of electrochemically synthesized poly-(1-naphthylamine) from neutral acetonitrile solution. J Serbian Chem Soc 67(12):867–877CrossRefGoogle Scholar
  23. 23.
    Jadoun S, Verma A, Ashraf SM, Riaz U (2017) A short review on the synthesis, characterization, and application studies of poly(1-naphthylamine): a seldom explored polyaniline derivative. Colloid Polym Sci 295(9):1443–1453CrossRefGoogle Scholar
  24. 24.
    Ameen S, Akhtar MS, Kim YS, Shin HS (2011) Nanocomposites of poly(1-naphthylamine)/SiO2 and poly(1-naphthylamine)/TiO2: Comparative photocatalytic activity evaluation towards methylene blue dye. Appl Catal B Environ 103(1-2):136–142CrossRefGoogle Scholar
  25. 25.
    Riaz U, Ahmad S, Ashraf SM (2008) Effect of dopant on the nanostructured morphology of poly (1-naphthylamine) synthesized by template free method. Nanoscale Res Lett 3(1):45–48CrossRefGoogle Scholar
  26. 26.
    zhen HZ, Yu X, hui YJ et al (2018) Largely enhanced dielectric properties of poly(vinylidene fluoride) composites achieved by adding polypyrrole-decorated graphene oxide. Compos Part A Appl Sci Manuf 104:89–100CrossRefGoogle Scholar
  27. 27.
    Rana U, Malik S (2012) Graphene oxide/polyaniline nanostructures: Transformation of 2D sheet to 1D nanotube and in situ reduction. Chem Commun 48:10862–10864CrossRefGoogle Scholar
  28. 28.
    Zhou H, Han G, Xiao Y, Chang Y, Zhai HJ (2014) Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors. J Power Sources 263:259–267CrossRefGoogle Scholar
  29. 29.
    Gui D, Liu C, Chen F, Liu J (2014) Preparation of polyaniline/graphene oxide nanocomposite for the application of supercapacitor. Appl Surf Sci 307:172–177CrossRefGoogle Scholar
  30. 30.
    Riaz U, Ahmad S, Ashraf SM (2008) Pseudo template synthesis of poly (1-naphthylamine): Effect of environment on nanostructured morphology. J Nanoparticle Res 10(7):1209–1214CrossRefGoogle Scholar
  31. 31.
    Ashraf SM, Ahmad S, Riaz U (2006) Synthesis and characterization of novel poly(1-naphthylamine)- montmorillonite nanocomposites intercalated by emulsion polymerization. J Macromol Sci Part B Phys 45(B):1109–1123CrossRefGoogle Scholar
  32. 32.
    Atiqah TN, Tan SJ, Foo KL, Supri AG, al Bakri AMM, Liew YM (2018) Effect of graphite loading on properties of polyaniline/graphite composites. Polym Bull 75(1):209–220CrossRefGoogle Scholar
  33. 33.
    Yablokov MY, Gil’man AB, Shchegolikhin AN et al (2011) Polymer synthesis from 1-aminonaphthalene in direct-current discharge. High Energy Chem 45:157–161CrossRefGoogle Scholar
  34. 34.
    Konwer S, Guha AK, Dolui SK (2013) Graphene oxide-filled conducting polyaniline composites as methanol-sensing materials. J Mater Sci 48(4):1729–1739CrossRefGoogle Scholar
  35. 35.
    Salimikia I, Heydari R, Yazdankhah F (2018) Polyaniline/graphene oxide nanocomposite as a sorbent for extraction and determination of nicotine using headspace solid-phase microextraction and gas chromatography–flame ionization detector. J Iran Chem Soc 15(7):1593–1601CrossRefGoogle Scholar
  36. 36.
    Zhong J, Gao S, Xue G, Wang B (2015) Study on enhancement mechanism of conductivity induced by graphene oxide for Polypyrrole nanocomposites. Macromolecules 48(5):1592–1597CrossRefGoogle Scholar
  37. 37.
    Yaghoubidoust F, Wicaksono DHB, Chandren S, Nur H (2014) Effect of graphene oxide on the structural and electrochemical behavior of polypyrrole deposited on cotton fabric. J Mol Struct 1075:486–493CrossRefGoogle Scholar
  38. 38.
    Ashok Kumar N, Baek JB (2014) Electrochemical supercapacitors from conducting polyaniline-graphene platforms. Chem Commun 50:6298–6308CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Femina Kanjirathamthadathil Saidu
    • 1
    • 2
  • Alex Joseph
    • 3
  • Eldhose Vadakkechalil Varghese
    • 3
  • George Vazhathara Thomas
    • 1
    Email author
  1. 1.Department of ChemistrySt. Joseph’s CollegeIdukkiIndia
  2. 2.Department of ChemistryMaharaja’s CollegeErnakulamIndia
  3. 3.Department of ChemistryNewman CollegeThodupuzhaIndia

Personalised recommendations