Advanced poly(vinyl alcohol) porous separator with overcharge protection function for lithium-ion batteries

  • Kaiyue Zhang
  • Wei XiaoEmail author
  • Jianguo Liu
  • Chuanwei Yan
Original Paper


The separator plays a key role in improving the safety and charge-discharge property of lithium-ion batteries. Herein, a home-made polyvinyl alcohol porous separator with three-dimensional porous structure is used as the substrate to allow a perfect distribution of the inexpensive electroactive polymer polytriphenylamine. The electroactive polymer exhibits a reversible electrochemical reaction belonging to doping and dedoping process between 3.0 and 4.5 V, which provides potential overcharge protection function for the functionalized composite separator. Due to maximum preservation of the original porous structure of the polyvinyl alcohol separator, the composite separator likewise possesses excellent electrolyte affinity and ionic conductivity. A blocking cell assembled with the composite separator still has a certain voltage clamp function even if the current density increases to 5.0 mA cm−2. Moreover, a half-cell (LiFePO4-Li) assembled with the composite separator exhibits a reversible voltage-regulated current shunt even after 50 overcharge cycles. At a high current density rate of 4.0 C, the half-cell can still provide a discharge capacity of 94 mAh g−1 and an effective overcharging shunting at 4.0 V.


Lithium-ion battery Polyvinyl alcohol separator Polytriphenylamine Overcharge protection Charge-discharge performance 


Funding information

The authors would like to acknowledge the support of the National Natural Science Foundation of China (No. 21676282), Natural Science Foundation of Liaoning (No. 20180510039), and Shenyang Science and Technology Project (No. 18013051).

Compliance with ethical standards

Conflicts of interest

The authors declare that there are no conflicts of interest.


  1. 1.
    Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935CrossRefGoogle Scholar
  2. 2.
    Cho TH, Tanaka M, Ohnish H, Kondo Y, Yoshkazu M, Nakamura T, Sakai T (2010) Composite nonwoven separator for lithium-ion battery: development and characterization. J Power Sources 195(13):4272–4277CrossRefGoogle Scholar
  3. 3.
    Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176CrossRefGoogle Scholar
  4. 4.
    Djian D, Alloin F, Martinet S, Lignier H, Sanchez JY (2007) Lithium-ion batteries with high charge rate capacity: influence of the porous separator. J Power Sources 172(1):416–421CrossRefGoogle Scholar
  5. 5.
    Zhang K, Xiao W, Liu J, Yan C (2018) A novel self-binding composite separator based on poly(tetrafluoroethylene) coating for Li-ion batteries. Polymers 10(12):1409CrossRefGoogle Scholar
  6. 6.
    Na W, Koh KH, Lee AS, Cho S, Ok B, Hwang S, Lee JH, Koo CM (2019) Binder-less chemical grafting of SiO2 nanoparticles onto polyethylene separators for lithium-ion batteries. J Membr Sci 573:621–627CrossRefGoogle Scholar
  7. 7.
    Choi J, Jung Y, Lee Y, Kim D (2017) High performance separator coated with amino-functionalized SiO2 particles for safety enhanced lithium-ion batteries. J Membr Sci 535:151–157CrossRefGoogle Scholar
  8. 8.
    Prasanna K, Kim C, Chang W (2014) Effect of SiO2 coating on polyethylene separator with different stretching ratios for application in lithium ion batteries. Mater Chem Phys 146(3):545–550CrossRefGoogle Scholar
  9. 9.
    Jeon H, Yeon D, Lee T, Park J, Ryou M, Lee YM (2016) A water-based Al2O3 ceramic coating for polyethylene-based microporous separators for lithium-ion batteries. J Power Sources 315:161–168CrossRefGoogle Scholar
  10. 10.
    Shi C, Zhang P, Chen L, Yang P, Zhao J (2014) Effect of a thin ceramic-coating layer on thermal and electrochemical properties of polyethylene separator for lithium-ion batteries. J Power Sources 270:547–553CrossRefGoogle Scholar
  11. 11.
    Shi C, Dai J, Shen X, Peng L, Li C, Wang X, Zhang P, Zhao J (2016) A high-temperature stable ceramic-coated separator prepared with polyimide binder/Al2O3 particles for lithium-ion batteries. J Membr Sci 517:91–99CrossRefGoogle Scholar
  12. 12.
    Liao Y, Chen T, Luo X, Fu Z, Li X, Li W (2016) Cycling performance improvement of polypropylene supported poly(vinylidene fluoride-co-hexafluoropropylene)/maleic anhydride-grated-polyvinylidene fluoride based gel electrolyte by incorporating nano-Al2O3 for full batteries. J Membr Sci 507:126–134CrossRefGoogle Scholar
  13. 13.
    Jeong H, Hong S, Lee S (2010) Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/poly(vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries. J Membr Sci 364(1-2):177–182CrossRefGoogle Scholar
  14. 14.
    Kim KJ, Kwon HK, Park MS, Yim T, Yu JS, Kim YJ (2014) Ceramic composite separators coated with moisturized ZrO2 nanoparticles for improving the electrochemical performance and thermal stability of lithium ion batteries. Phys Chem Chem Phys 16(20):9337–9343CrossRefGoogle Scholar
  15. 15.
    Peng K, Wang B, Li Y, Ji C (2015) Magnetron sputtering deposition of TiO2 particles on polypropylene separators for lithium-ion batteries. RSC Adv 5(99):81468–81473CrossRefGoogle Scholar
  16. 16.
    Zhu X, Jiang X, Ai X, Yang H, Cao Y (2016) TiO2 ceramic-grafted polyethylene separators for enhanced thermostability and electrochemical performance of lithium-ion batteries. J Membr Sci 504:97–103CrossRefGoogle Scholar
  17. 17.
    Croce F, Focarete ML, Hassoun J, Meschini I, Scrosati B (2011) A safe, high-rate and high energy polymer lithium-ion battery based on gelled membranes prepared by electrospinning. Energy Environ Sci 4(3):921–927CrossRefGoogle Scholar
  18. 18.
    Xiong M, Tang H, Wang Y, Lin Y, Sun M, Yin Z, Pan M (2013) Expanded polytetrafluoroethylene reinforced polyvinylidenefluoride hexafluoropropylene separator with high thermal stability for lithium-ion batteries. J Power Sources 241:203–211CrossRefGoogle Scholar
  19. 19.
    Wang L, Wang Z, Sun Y, Liang X, Xiang H (2019) Sb2O3 modified PVDF-CTFE electrospun fibrous membrane as a safe lithium-ion battery separator. J Membr Sci 572:512–519CrossRefGoogle Scholar
  20. 20.
    Costa CM, Kundu M, Cardoso VF, Machado AV, Silva MM, Lanceros-Méndez S (2018) Silica/poly(vinylidene fluoride) porous composite membranes for lithium-ion battery separators. J Membr Sci 564:842–851CrossRefGoogle Scholar
  21. 21.
    Lee JH, Manuel J, Choi H, Parka W, Ahn J (2015) Partially oxidized polyacrylonitrile nanofibrous membrane as a thermally stable separator for lithium ion batteries. Polymer 68:335–343CrossRefGoogle Scholar
  22. 22.
    Kim YJ, Kim HS, Doh CH, Kim S, Lee S (2013) Technological potential and issues of polyacrylonitrile based nanofiber non-woven separator for Li-ion rechargeable batteries. J Power Sources 244:196–206CrossRefGoogle Scholar
  23. 23.
    Shayapat J, Chung OH, Park JS (2015) Electrospun polyimide-composite separator for lithium-ion batteries. Electrochim Acta 170:110–121CrossRefGoogle Scholar
  24. 24.
    Zhang H, Lin CE, Zhou MY, John A, Zhu B (2016) High thermal resistance polyimide separators prepared via soluble precusor and non-solvent induced phase separation process for lithium ion batteries. Electrochim Acta 187:125–133CrossRefGoogle Scholar
  25. 25.
    Kong L, Yan Y, Qiu Z, Zhou Z, Hu J (2018) Robust fluorinated polyimide nanofibers membrane for high-performance lithium-ion batteries. J Membr Sci 549:321–331CrossRefGoogle Scholar
  26. 26.
    Hao JL, Lei GT, Li ZH, Wu L, Xiao Q, Wang L (2013) A novel polyethylene terephthalate nonwoven separator based on electrospinning technique for lithium ion battery. J Membr Sci 428:11–16CrossRefGoogle Scholar
  27. 27.
    Jeong H, Choi E, Lee S, Kim J (2012) Evaporation-induced, close-packed silica nanoparticle-embedded nonwoven composite separator membranes for high-voltage/high-rate lithium-ion batteries: Advantageous effect of highly percolated, electrolyte-philic microporous architecture. J Membr Sci 415-416:513–519CrossRefGoogle Scholar
  28. 28.
    Qi W, Lu C, Chen P, Han L, Yu Q, Xu R (2012) Electrochemical performances and thermal properties of electrospun poly(phthalazinone ether sulfone ketone) membrane for lithium-ion battery. Mater Lett 66(1):239–241CrossRefGoogle Scholar
  29. 29.
    Feng JK, Ai XP, Cao YL, Yang HX (2006) Polytriphenylamine used as an electroactive separator material for overcharge protection of rechargeable lithium battery. J Power Sources 161(1):545–549CrossRefGoogle Scholar
  30. 30.
    Feng XM, Zheng JY, Zhang JJ, Li RF, Li ZJ (2009) Copolymerization of polytriphenylamine with coumarin to improve the oxidation potential and LiFePO4 battery overcharge tolerance. Electrochim Acta 54(16):4036–4039CrossRefGoogle Scholar
  31. 31.
    Wang B, Richardson TJ, Chen G (2014) Electroactive polymer fiber separators for stable and reversible overcharge protection in rechargeable lithium batteries. J Electrochem Soc 161(6):A1039–A1044CrossRefGoogle Scholar
  32. 32.
    Li SL, Xia L, Zhang HY, Ai XP, Yang HX, Cao YL (2011) A poly(3-decyl thiophene)-functionalized separator with self-actuating overcharge protection mechanism for LiFePO4-based lithium ion battery. J Power Sources 196(16):7021–7024CrossRefGoogle Scholar
  33. 33.
    Chen G, Richardson TJ (2010) Overcharge protection for 4 V lithium batteries at high rates and low temperatures. J. Electrochem Soc 157(6):A735–A740CrossRefGoogle Scholar
  34. 34.
    Wang B, Richardson TJ, Chen G (2013) Stable and high-rate overcharge protection for rechargeable lithium batteries. Phys Chem Chem Phys 15(18):6849–6855CrossRefGoogle Scholar
  35. 35.
    Xiao W, Zhao L, Gong Y, Liu J, Yan C (2015) Preparation and performance of poly (vinyl alcohol) porous separator for lithium-ion batteries. J Membr Sci 487:221–228CrossRefGoogle Scholar
  36. 36.
    Xiao W, Zhang K, Liu J, Yan C (2017) Preparation of poly(vinyl alcohol)-based separator with poreforming additive for lithium-ion batteries. J Mater Sci Mater Electron 28:17516–17525CrossRefGoogle Scholar
  37. 37.
    Xia M, Liu QZ, Zhou Z, Tao Y, Li M, Liu K, Wu Z, Wang D (2014) A novel hierarchically structured and highly hydrophilic poly(vinyl alcohol-co-ethylene)/poly(ethylene terephthalate) nanoporous membrane for lithium ion battery separator. J Power Sources 266:29–35CrossRefGoogle Scholar
  38. 38.
    Chen G, Richardson TJ (2004) Overcharge protection for rechargeable lithium batteries using electroactive polymers. Electrochem Solid-State Lett 7(2):A23–A26CrossRefGoogle Scholar
  39. 39.
    Takahashi C, Moriya S, Fugono N, Lee HC, Sato H (2002) Preparation and characterization of poly(4-alkyltriphenylamine) by chemical oxidative polymerization. Synth Met 129(2):123–128CrossRefGoogle Scholar
  40. 40.
    Feng JK, Cao YL, Ai XP, Yang HX (2008) Polytriphenylamine: a high power and high capacity cathode material for rechargeable lithium batteries. J Power Sources 177(1):199–204CrossRefGoogle Scholar
  41. 41.
    Ni W, Cheng J, Li X, Gu G, Huang L, Guan Q, Yuan D, Wang B (2015) Polymeric cathode materials of electroactive conducting poly(triphenylamine) with optimized structures for potential organic pseudo-capacitors with higher cut-off voltage and energy density. RSC Adv 5(12):9221–9227CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.School of Materials Science and EngineeringUniversity of Science and Technology of ChinaShenyangChina

Personalised recommendations