Advertisement

Correlation between lead isotope analysis and solid-state electrochemistry for determining the provenance of archaeological bronze

  • Antonio Doménech-CarbóEmail author
  • Joan Bernabeu-AubánEmail author
Original Paper
  • 24 Downloads

Abstract

The voltammetry of microparticles (VIMP) methodology was applied to a set of submicrosamples from the corrosion layers of copper artifacts from the archaeological site of La Vital (Gandia, Spain), dated back to 4200 to 3900 BP, attached to graphite electrodes in contact with aqueous acetate buffer at pH 4.50. Signals for the reduction of cuprite plus malachite, dominating the composition of the corrosion layers, and tenorite, were used for grouping the samples. A model to describe their relative concentrations assuming gradients following a potential law is proposed and tested with experimental data. Correlation of VIMP sample grouping with lead isotope data in literature permitted to discriminate archaeological samples depending on the provenance of raw materials and the manufacturing process.

Keywords

Electrochemistry Archaeometry Metal provenance Isotope analysis Corrosion products 

Notes

Funding information

This study received financial support from the project CTQ2017-85317-C2-1-P, supported with Ministerio de Economía, Industria y Competitividad (MINECO), Fondo Europeo de Desarrollo Regional (ERDF), and Agencia Estatal de Investigación (AEI).

Supplementary material

10008_2019_4378_MOESM1_ESM.doc (51 kb)
ESM 1 (DOC 51 kb)

References

  1. 1.
    Radivojevic M, Rehren T, Pernicka E, Silvar D, Brauns M, Boric D (2010) On the origin of extractive metallurgy: new evidence from Europe. J Archaeol Sci 37:2775–2787CrossRefGoogle Scholar
  2. 2.
    Sessa C, Bagán H, Romero MT, García JF (2017) Effects of variability sources on analysis of the composition of large ancient metal objects. Microchem J 134:309–316CrossRefGoogle Scholar
  3. 3.
    Constantinides I, Gritsch M, Adriaens A, Hutter H, Adams F (2001) Microstructural characterisation of five simulated archaeological copper alloys using light microscopy, scanning electron microscopy, energy dispersive X-ray microanalysis and secondary ion mass spectrometry. Anal Chim Acta 440:189–198CrossRefGoogle Scholar
  4. 4.
    Shalev S, Shilstein SS, Yekutieli Y (2006) XRF study of archaeological and metallurgical material from an ancient copper-smelting site near Ein-Yahav, Israel. Talanta 70:909–913CrossRefGoogle Scholar
  5. 5.
    Gaudiuso R, Dell’Aglio M, De Pascale O, Loperfido S, Mangone A, De Giacomo A (2014) Laser-induced breakdown spectroscopy of archaeological findings with calibration-free inverse method: comparison with classical laser-induced breakdown spectroscopy and conventional techniques. Anal Chim Acta 813:15–24CrossRefGoogle Scholar
  6. 6.
    del Hoyo-Meléndez JM, Swit P, Matosz M, Wozniak M, Klisinska-Topacz A, Bratasz L (2015) Micro-XRF analysis of silver coins from medieval Poland. Nucl Inst Methods Phys Res B 349:6–16CrossRefGoogle Scholar
  7. 7.
    Gale NH, Stos-Gale ZA, Maliotis G, Annetts N (1997) Lead isotope data from the isotrace laboratory, Oxford: Archaeometry data base 4, ores from Cyprus. Archaeometry 39:237–246CrossRefGoogle Scholar
  8. 8.
    Attanasio D, Bultrini G, Ingo GM (2001) The possibility of provenancing a series of bronze punic coins found at Tharros (Western Sardinia) using the literature lead isotope database. Archaeometry 43:529–547CrossRefGoogle Scholar
  9. 9.
    Resano M, Marzo MP, Alloza R, Saénz C, Vanhaecke F, Yang L, Willie S, Sturgeon RE (2010) Laser ablation single-collector inductively coupled plasma mass spectrometry for lead isotopic analysis to investigate evolution of the Bilbilis mint. Anal Chim Acta 677:55–63CrossRefGoogle Scholar
  10. 10.
    Gomes SS, Monge Soares A, Araujo MF, Correia VH (2016) Lead isotopes and elemental composition of Roman fistulae plumbeae aquariae from Conimbriga (Portugal) using Quadrupole ICP-MS. Microchem J 129:184–193CrossRefGoogle Scholar
  11. 11.
    Klein S, Lahaye Y, Brey GP (2004) The Early Roman Imperial AES coinage II: tracing the copper sources by analysis of lead and copper isotopes-copper coins of Augustus and Tiberius. Archaeometry 46:469–480CrossRefGoogle Scholar
  12. 12.
    Balliana E, Aramendía M, Resano M, Barbante C, Vanhaecke F (2013) Copper and tin isotopic analysis of ancient bronzes for archaeological investigation: development and validation of a suitable analytical methodology. Anal Bioanal Chem 405:2973–2986CrossRefGoogle Scholar
  13. 13.
    Scott DA (1994) An examination of the patina and corrosion morphology of some Roman bronzes. J Am Ite Cons 33:1–23CrossRefGoogle Scholar
  14. 14.
    Robbiola L, Blengino J-M, Fiaud C (1998) Morphology and mechanisms of formation of natural patinas on archaeological CuSn alloys. Corros Sci 40:2083–2111CrossRefGoogle Scholar
  15. 15.
    Agresti J, Osticioli I, Guidotti MC, Kardjilov N, Siano S (2016) Non-invasive archaeometallurgical approach to the investigations of bronze figurines using neutron, laser, and X-ray techniques. Microchem J 124:765–774CrossRefGoogle Scholar
  16. 16.
    Robbiola L, Portier R (2006) A global approach to the authentication of ancient bronzes based on the characterization of the alloy–patina–environment system. J Cult Herit 7:1–12CrossRefGoogle Scholar
  17. 17.
    Chiavari C, Rahmouni K, Takenouti H, Joiret S, Vermaut P, Robbiola L (2007) Composition and electrochemical properties of natural patinas of outdoor bronze monuments. Electrochim Acta 52:7760–7769CrossRefGoogle Scholar
  18. 18.
    Scholz F, Meyer B (1998) Voltammetry of solid microparticles immobilized on electrode surfaces. In: Bard AJ, Rubinstein I (eds) Electroanalytical chemistry, a series of advances, vol 20. Marcel Dekker, New York, pp 1–86Google Scholar
  19. 19.
    Scholz F, Schröder U, Gulabowski R, Doménech-Carbó A (2014) Electrochemistry of immobilized particles and droplets, 2nd. Springer, Berlin-HeidelbergGoogle Scholar
  20. 20.
    Doménech-Carbó A, Labuda J, Scholz F (2013) Electroanalytical chemistry for the analysis of solids: characterization and classification (IUPAC Technical Report). Pure Appl Chem 85:609–631CrossRefGoogle Scholar
  21. 21.
    Costa V, Leyssens K, Adriaens A, Richard N, Scholz F (2010) Electrochemistry reveals archaeological materials. J Solid State Electrochem 14:449–451CrossRefGoogle Scholar
  22. 22.
    Arjmand F, Adriaens A (2012) Electrochemical quantification of copper-based alloys using voltammetry of microparticles: optimization of the experimental conditions. J Solid State Electrochem 16:535–543CrossRefGoogle Scholar
  23. 23.
    Serghini-Idrissi M, Bernard MC, Harrif FZ, Joiret S, Rahmouni K, Srhiri A, Takenouti H, Vivier V, Ziani M (2005) Electrochemical and spectroscopic characterizations of patinas formed on an archaeological bronze coin. Electrochim Acta 50:4699–4709CrossRefGoogle Scholar
  24. 24.
    Doménech-Carbó A, Doménech-Carbó MT, Martínez-Lázaro I (2008) Electrochemical identification of bronze corrosion products in archaeological artifacts, a case study. Microchim Acta 162:351–359CrossRefGoogle Scholar
  25. 25.
    Satovic D, Martinez S, Bobrowski A (2010) Electrochemical identification of corrosion products on historical and archaeological bronzes using the voltammetry of micro-particles attached to a carbon paste electrode. Talanta 81:1760–1765CrossRefGoogle Scholar
  26. 26.
    Doménech-Carbó A, Doménech-Carbó MT, Costa V (2009) In: Scholz F (ed) Electrochemical methods in archaeometry, conservation and restoration, Monographs in Electrochemistry Series. Springer, Berlin-HeidelbergCrossRefGoogle Scholar
  27. 27.
    Doménech-Carbó A (2010) Voltammetric methods applied to identification, speciation and quantification of analytes from works of art: an overview. J Solid State Electrochem 14:363–379CrossRefGoogle Scholar
  28. 28.
    Doménech-Carbó A, Doménech-Carbó MT (2018) Electroanalytical techniques in archaeological and art conservation. Pure Appl Chem 90:447–462CrossRefGoogle Scholar
  29. 29.
    Doménech-Carbó A (2017) Electrochemical dating: a review. J Solid State Electrochem 21:1987–1998CrossRefGoogle Scholar
  30. 30.
    Capelo S, Homem PM, Cavalheiro J, Fonseca ITE (2013) Linear sweep voltammetry: a cheap and powerful technique for the identification of the silver tarnish layer constituent. J Solid State Electrochem 17:223–234CrossRefGoogle Scholar
  31. 31.
    Cepriá G, Abadías O, Pérez-Arantegui J, Castillo JR (2001) Electrochemical behavior of silver-copper alloys in voltammetry of microparticles: a simple method for screening purposes. Electroanalysis 13:477–483CrossRefGoogle Scholar
  32. 32.
    Doménech-Carbó A, Del Hoyo-Menéndez J, Doménech-Carbó MT, Piquero-Cilla J (2017) Electrochemical analysis of the first Polish coins using the voltammetry of immobilized particles. Microchem J 130:47–55CrossRefGoogle Scholar
  33. 33.
    Di Turo F, Montoya N, Piquero-Cilla J, De Vito C, Coletti F, Favero G, Doménech-Carbó A (2017) Archaeometric analysis of Roman bronze coins from the Magna Mater temple using solid-state voltammetry and electrochemical impedance spectroscopy. Anal Chim Acta 955:36–47CrossRefGoogle Scholar
  34. 34.
    Doménech-Carbó A, Doménech-Carbó MT, Montagna E, Lee Y (2017) Electrochemical discrimination of mints: the last Chinese emperors Kuang Hsü and Hsüan T’ung monetary unification. Talanta 169:50–56CrossRefGoogle Scholar
  35. 35.
    Doménech-Carbó A, Doménech-Carbó MT, Álvarez-Romero C, Montoya N, Pasíes-Oviedo T, Buendía M (2017) Electrochemical characterization of coinage techniques the 17th century: the maravedís case. Electroanalysis 29:2008–2018CrossRefGoogle Scholar
  36. 36.
    Di Turo F, Montoya N, Piquero-Cilla J, De Vito C, Coletti F, Favero G, Doménech-Carbó MT, Doménech-Carbó A (2018) Dating archaeological strata in the Magna Mater Temple using solid-state voltammetric analysis of leaded bronze coins. Electroanalysis 30:361–370CrossRefGoogle Scholar
  37. 37.
    Doménech-Carbó A, Doménech-Carbó M T, Capelo S, Pasíes-Oviedo T, Martínez-Lázaro I (2014) Dating archaeological copper/bronze artifacts using the voltammetry of microparticles. Angew Chem Int Ed 53:9262–9266CrossRefGoogle Scholar
  38. 38.
    Doménech-Carbó A, Doménech-Carbó MT, Redondo-Marugán J, Osete-Cortina L, Barrio J, Fuentes A, Vivancos-Ramón MV, Al-Sekhaneh W, Martínez B, Martínez-Lázaro I, Pasíes-Oviedo T (2018) Electrochemical characterization and dating of archeological leaded bronze objects using the voltammetry of immobilized particles. Archaeometry 60:308–324CrossRefGoogle Scholar
  39. 39.
    Doménech-Carbó A, Doménech-Carbó MT, Peiró-Ronda MA (2011) Dating archaeological lead artifacts from measurement of the corrosion content using the voltammetry of microparticles. Anal Chem 83:5639–5644CrossRefGoogle Scholar
  40. 40.
    Ferragud-Adam X, Piquero-Cilla J, Doménech-Carbó MT, Guerola-Blay V, Company X, Doménech-Carbó A (2017) Electrochemical analysis of gildings in Valencia Altarpieces: a cross-age study since 15th until 20th century. J Solid State Electrochem 21:1477–1487CrossRefGoogle Scholar
  41. 41.
    Martínez B, Piquero-Cilla J, Montoya N, Doménech-Carbó MT, Doménech-Carbó A (2018) Electrochemical analysis of gold embroidery threads from archaeological textiles. J Solid State Electrochem 22:2205–2215CrossRefGoogle Scholar
  42. 42.
    Doménech-Carbó A, Scholz F, Doménech-Carbó MT, Piquero-Cilla J, Monytoya N, Pasíes-Oviedo T, Gozalbes M, Melchor-Montserrat JM, Oliver A (2018) Dating of archaeological gold by means of solid state electrochemistry. ChemElectroChem 5:2113–2117CrossRefGoogle Scholar
  43. 43.
    Doménech-Carbó A, Scholz F (2019) Electrochemical age determinations of metallic specimens – the utilization of the corrosion clock. Acc Chem Res 52:400–406CrossRefGoogle Scholar
  44. 44.
    Doménech-Carbó A, Doménech-Carbó MT, Peiró-Ronda MA, Martinez-Lázaro I, Barrio J (2012) Application of the voltammetry of microparticles for dating archaeological lead using polarization curves and electrochemical impedance spectroscopy. J Solid State Electrochem 16:2349–2356CrossRefGoogle Scholar
  45. 45.
    Doménech-Carbó A, Lastras M, Rodríguez F, Cano E, Piquero-Cilla J, Osete-Cortina L (2014) Monitoring stabilizing procedures of archaeological iron using electrochemical impedance spectroscopy. J Solid State Electrochem 18:399–409CrossRefGoogle Scholar
  46. 46.
    Di Turo F, Parra R, Piquero-Cilla J, Favero G, Doménech-Carbó A (2019) Crossing VIMP and EIS for studying heterogeneous sets of copper/bronze coins. J Solid State Electrochem 23:771–781CrossRefGoogle Scholar
  47. 47.
    Rovira S, Montero-Ruiz E (2011) Aspectos metalúrgicos, in Pérez-Jordá G, Bernabeu-Aubán J, Carrión-Marco Y, García-Puchol O, Molina-Balaguer L, Gómez-Puche M, La Vital (Gandia, Valencia): vida y muerte en la desembocadura del Serpis durante el III y el I milenio a.C. Museo de Prehistoria de Valencia, Valencia, pp. 219-227Google Scholar
  48. 48.
    Díaz-Castillo A (2011) El marco cronológico a partir de la evidencia radiocarbónica del yacimiento de La Vital, in Pérez-Jordá G, Bernabeu-Aubán J, Carrión-Marco Y, García-Puchol O, Molina-Balaguer L, Gómez-Puche M, Eds. La Vital (Gandia, Valencia): vida y muerte en la desembocadura del Serpis durante el III y el I milenio a.C. Museo de Prehistoria de Valencia, Valencia, pp. 235-245Google Scholar
  49. 49.
    Budd P, Gale D, Pollard AM, Thomas RG, Williams PA (1993) Evaluating lead isotope data: further observations. Archaeometry 35:241–247CrossRefGoogle Scholar
  50. 50.
    Budd P, Pollard AM, Scaiffe B, Thomas RG (1995) The possible fractionation of lead isotopes in ancient metallurgical processes. Archaeometry 37:143–150CrossRefGoogle Scholar
  51. 51.
    Baron S, Le-Carlier C, Carignan J, Ploquin A (200) Archaeological reconstruction of medieval lead production: implications for ancient metal provenance studies and paleopollution tracing by Pb isotopes. Appl Geochem 24:2093–2101Google Scholar
  52. 52.
    Burgio L, Clark RJH (2001) Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochim Acta A 57:1491–1521CrossRefGoogle Scholar
  53. 53.
    Caggiani MC, Cosentino A, Mangone A (2016) Pigments Checker version 3.0, a handy set for conservation scientists: a free online Raman spectra database. Microchem J 129:123–132CrossRefGoogle Scholar
  54. 54.
    Stos-Gale Z, Gale NH, Houghton J, Speakman R (1995) Lead isotope data from the isotrace laboratory, Oxford: Archaeometry data base 1, ores from the Western Mediterranean. Archaeometry 37:407–415CrossRefGoogle Scholar
  55. 55.
    Kuleff I, Iliev I, Pernicka E, Gergova D (2006) Chemical and lead isotope compositions of lead artifacts from ancient Thracia (Bulgaria). J Cult Herit 7:244–256CrossRefGoogle Scholar
  56. 56.
    Doménech-Carbó A, Doménech-Carbó MT, Redondo-Marugán J, Osete-Cortina L, Vivancos-Ramón MV (2016) Electrochemical characterization of corrosion products in leaded bronze sculptures considering ohmic drop effects on Tafel analysis. Electroanalysis 28:833–845CrossRefGoogle Scholar
  57. 57.
    Scott DA (1997) Copper compounds in metals and colorants: oxides and hydroxides. Stud Conserv 42:93–100Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departament de Química AnalíticaUniversitat de ValènciaValènciaSpain
  2. 2.Grupo PREMEDOC, Departament de Prehistoria, Arqueologia i Historia AntigaUniversitat de ValènciaValènciaSpain

Personalised recommendations