Advertisement

Nanorod β-Ga2O3 semiconductor modified activated carbon as catalyst for improving power generation of microbial fuel cell

  • Xiujuan Li
  • Di Liu
  • Xiaoping MoEmail author
  • Kexun LiEmail author
Original Paper
  • 18 Downloads

Abstract

Nanorod monoclinic β-Ga2O3 semiconductor, synthesized by a facile hydrothermal method, was firstly researched as a catalyst to modify activated carbon air cathode in microbial fuel cells (MFCs). The maximum power density of modified MFC reaching 1843 ± 40 mW m−2 was 3 times higher than the control. The Brunauer-Emmett-Teller (BET), transmission electron microscope (TEM), and X-ray diffraction (XRD) results revealed the larger surface area and porous structure could provide more active sites to improve the performance of MFCs. The result of X-ray photoelectron spectroscopy (XPS) confirmed that plenty of oxygen vacancy existed in the synthesized β-Ga2O3. Tafel curve and rotating disk electrode (RDE) results illustrated the high exchange current density of β-Ga2O3 and the four-electron pathway at the cathode during the oxygen reduction reaction (ORR), respectively. The cathode modified with β-Ga2O3 displayed excellent improvement towards ORR and therefore improved the performance of MFCs.

Keywords

β-Ga2O3 Semiconductor Oxygen vacancy Oxygen reduction reaction Microbial fuel cells 

Notes

Funding information

This work was supported by the National Science Foundation of Tianjin (17JCYBJC23300), National Key R&D Program of China (No. 2016YFC 0400704 and No. 2016YFC0401407), and the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin (No. IWHR-SKL-KF201806).

Supplementary material

10008_2019_4377_MOESM1_ESM.docx (345 kb)
ESM 1 (DOCX 344 kb)

References

  1. 1.
    Zhang X, He W, Yang W, Liu J, Wang Q, Liang P, Huang X, Logan BE (2016) Diffusion layer characteristics for increasing the performance of activated carbon air cathodes in microbial fuel cells. Environ Sci Water Res Technol 2(2):266–273CrossRefGoogle Scholar
  2. 2.
    Yang W, Kim KY, Logan BE (2015) Development of carbon free diffusion layer for activated carbon air cathode of microbial fuel cells. Bioresour Technol 197:318–322CrossRefGoogle Scholar
  3. 3.
    Li WW, Yu HQ, He Z (2013) Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ Sci 7(3):911–924CrossRefGoogle Scholar
  4. 4.
    Ce Z, Chen J, Ding Y, Wang VB, Bao B, Kjelleberg S, Cao B, Loo SCJ, Wang LH, Huang W, Zhang Q (2015) Chemically functionalized conjugated oligoelectrolyte nanoparticles for enhancement of current generation in microbialfuel cells. ACS Appl Mater Interfaces 7:14501–14505CrossRefGoogle Scholar
  5. 5.
    Zhang B, Wen Z, Ci S, Mao S, Chen J, He Z (2014) Synthesizing nitrogen-doped activated carbon and probing its active sites for oxygen reduction reaction in microbial fuel cells. ACS Appl Mater Interfaces 6(10):7464–7470CrossRefGoogle Scholar
  6. 6.
    Puzzo DP, Helander MG, O’Brien PG, Wang Z, Soheilnia N, Kherani N, Lu Z, Ozin GA (2011) Organic light-emitting diode microcavities from transparent conducting metal oxide photonic crystals. Nano Lett 11(4):1457–1462CrossRefGoogle Scholar
  7. 7.
    Wang J, Wu B, Zhang G, Tian L, Gu G, Gao C (2016) Pressure induced semiconductor–metal phase transition in GaAs: experimental and theoretical approaches. RSC Adv 6(12):10144–10149CrossRefGoogle Scholar
  8. 8.
    Fu Z, Yan L, Li K, Ge B, Pu L, Zhang X (2015) The performance and mechanism of modified activated carbon air cathode by non-stoichiometric nano Fe3O4 in the microbial fuel cell. Biosens Bioelectron 74:989–995CrossRefGoogle Scholar
  9. 9.
    Zhang X, Li K, Yan P, Liu Z, Pu L (2015) N-type Cu2O doped activated carbon as catalyst for improving power generation of air cathode microbial fuel cells. Bioresour Technol 187:299–304CrossRefGoogle Scholar
  10. 10.
    Zhang P, Li K, Liu X (2014) Carnation-like MnO2 modified activated carbon air cathode improve power generation in microbial fuel cells. J Power Sources 264:248–253CrossRefGoogle Scholar
  11. 11.
    Guo DY, Zhao XL, Zhi YS, Cui W, Huang YQ, An YH, Li PG, Wu ZP, Tang WH (2016) Epitaxial growth and solar-blind photoelectric properties of corundum-structured α-Ga2O3 thin films. Mater Lett 164:364–367CrossRefGoogle Scholar
  12. 12.
    Lopez I, Cebriano T, Hidalgo P, Nogales E, Piqueras J, Méndez B (2016) The role of impurities in the shape, structure and physical properties of semiconducting oxide nanostructures grown by thermal evaporation. AIMS Mater Sci 3(2):425–433CrossRefGoogle Scholar
  13. 13.
    Wang LS, Xu JP, Liu L, Lu H, Lai P, Tang W (2015) Plasma-nitrided Ga2O3(Gd2O3) as interfacial passivation layer for inGaAs metal-oxide-semiconductor capacitor with HfTiON gate dielectric. IEEE Trans Electron Devices 62(4):1235–1240CrossRefGoogle Scholar
  14. 14.
    Li X, Zhen X, Meng S, Xian J, Shao Y, Fu X, Li D (2013) Structuring beta-Ga2O3 photonic crystal photocatalyst for efficient degradation of organic pollutants. Environ Sci Technol 47(17):9911–9917CrossRefGoogle Scholar
  15. 15.
    Zhang W, Naidu BS, Ou JZ, O’Mullane AP, Chrimes AF, Carey BJ, Wang Y, Tang S-Y, Sivan V, Mitchell A, Bhargava SK, Kalantar ZK (2015) Liquid metal/metal oxide frameworks with incorporated Ga2O3 for photocatalysis. ACS Appl Mater Interfaces 7(3):1943–1948CrossRefGoogle Scholar
  16. 16.
    Reddy LS, Ho YH, Yu JS (2015) Hydrothermal synthesis and photocatalytic property of β-Ga2O3 nanorods. Nanoscale Res Lett 10(1):364CrossRefGoogle Scholar
  17. 17.
    Quan Y, Fang D, Zhang X, Liu S, Huang K (2010) Synthesis and characterization of gallium oxide nanowires via a hydrothermal method. Mater Chem Phys 121(1-2):142–146CrossRefGoogle Scholar
  18. 18.
    Dong H, Yu H, Wang X, Zhou Q, Feng J (2012) A novel structure of scalable air-cathode without Nafion and Pt by rolling activated carbon and PTFE as catalyst layer in microbial fuel cells. Water Res 46(17):5777–5787CrossRefGoogle Scholar
  19. 19.
    Wang X, Gao N, Zhou Q, Dong H, Yu H, Feng Y (2013) Acidic and alkaline pretreatments of activated carbon and their effects on the performance of air-cathodes in microbial fuel cells. Bioresour Technol 144:632–636CrossRefGoogle Scholar
  20. 20.
    Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38(14):4040–4046CrossRefGoogle Scholar
  21. 21.
    Lv Z, Xie D, Yue X, Feng C, Wei C (2012) Ruthenium oxide-coated carbon felt electrode: a highly active anode for microbial fuel cell applications. J Power Sources 210:26–31CrossRefGoogle Scholar
  22. 22.
    Feng C, Ma L, Li F, Mai H, Lang X, Fan S (2010) A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells. Biosens Bioelectron 25(6):1516–1520CrossRefGoogle Scholar
  23. 23.
    Zhao C, Wu J, Ding Y, Wang VB, Zhang Y, Kjelleberg S, Loo JSC, Cao B, Zhang Q (2015) Hybrid conducting biofilm with built-in bacteria for high-performance microbial fuel cells. ChemElectroChem 2(5):654–658CrossRefGoogle Scholar
  24. 24.
    He Z, Mansfeld F (2009) Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies. Energy Environ Sci 2(2):215–219CrossRefGoogle Scholar
  25. 25.
    Dong H, Yu H, Wang X (2012) Catalysis kinetics and porous analysis of rolling activated carbon-PTFE air-cathode in microbial fuel cells. Environ Sci Technol 46(23):13009–13015CrossRefGoogle Scholar
  26. 26.
    Ge B, Li K, Fu Z, Pu L, Zhang X, Liu Z, Huang K (2016) The performance of nano urchin-like NiCo2O4 modified activated carbon as air cathode for microbial fuel cell. J Power Sources 303:325–332CrossRefGoogle Scholar
  27. 27.
    Mohamed SH, El-Hagary M, Althoyaib S (2012) Growth of β-Ga2O3 nanowires and their photocatalytic and optical properties using Pt as a catalyst. J Alloys Compd 537:291–296CrossRefGoogle Scholar
  28. 28.
    Girija K, Thirumalairajan S, Mastelaro VR, Mangalaraj D (2016) Catalyst free vapor–solid deposition of morphologically different β-Ga2O3nanostructure thin films for selective CO gas sensors at low temperature. Anal Methods 8(15):3224–3235CrossRefGoogle Scholar
  29. 29.
    Wei J, Zang Z, Xue C, Shi F (2014) Synthesis of β- Ga2O3 nanorods by catalyzed chemical vapor deposition and their characterization. J Mater Sci Mater Electron 26:1368–1373CrossRefGoogle Scholar
  30. 30.
    Liu J, Zhang G (2015) Mesoporous mixed-phase Ga2O3: green synthesis and enhanced photocatalytic activity. Mater Res Bull 68:254–259CrossRefGoogle Scholar
  31. 31.
    Wang B, Huang J, Wang L, Shan W, Wang S (2012) Mesoporous copper–cerium–oxygen hybrid nanostructures for low temperature catalytic oxidation of carbon monoxide. J Porous Mater 20:629–635CrossRefGoogle Scholar
  32. 32.
    Liu D, Mo X, Li K, Liu Y, Wang J, Yang T (2017) The performance of spinel bulk-like oxygen-deficient CoGa2O4 as an air-cathode catalyst in microbial fuel cell. J Power Sources 359:355–362CrossRefGoogle Scholar
  33. 33.
    Liu Y, Li K, Ge B, Pu L, Liu Z (2016) Influence of micropore and mesoporous in activated carbon air-cathode catalysts on oxygen reduction reaction in microbial fuel cells. Electrochim Acta 214:110–118CrossRefGoogle Scholar
  34. 34.
    Hou J, Liu Z, Yang S, Zhou Y (2014) Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells. J Power Sources 258:204–209CrossRefGoogle Scholar
  35. 35.
    Yu H, Fisher A, Cheng D, Cao D (2016) Cu, N-codoped hierarchical porous carbons as electrocatalysts for oxygen reduction reaction. ACS Appl Mater Interfaces 8(33):21431–21439CrossRefGoogle Scholar
  36. 36.
    Li G-P, Weng W, Li F-M (2015) Photocatalytic performance of α-and β- Ga2O3 for the degradation of tetracycline hydrochloride in water. Chin J Struct Chem 34:1779–1785Google Scholar
  37. 37.
    Patra CR, Mastai Y, Gedanken A (2004) Microwave–assisted synthesis of submicrometer GaO(OH) and Ga2O3 rods. J Nanopart Res 6(5):509–518CrossRefGoogle Scholar
  38. 38.
    Su FZ, Ni J, Sun H, Cao Y, He YH, Fan KN (2008) Gold supported on nanocrystalline beta- Ga2O3 as a versatile bifunctional catalyst for facile oxidative transformation of alcohols, aldehydes, and acetals into esters. Chemistry 14(24):7131–7135CrossRefGoogle Scholar
  39. 39.
    Zhang F, Cheng S, Pant D, Bogaert GV, Logan BE (2009) Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochem Commun 11(11):2177–2179CrossRefGoogle Scholar
  40. 40.
    Girija K, Thirumalairajan S, Mangalaraj D (2014) Morphology controllable synthesis of parallely arranged single-crystalline β- Ga2O3 nanorods for photocatalytic and antimicrobial activities. Chem Eng J 2014(236):181–190CrossRefGoogle Scholar
  41. 41.
    Pan Y-X, Sun Z-Q, Cong H-P, Men Y-L, Xin S, Song J, Yu S-H (2016) Photocatalytic CO2 reduction highly enhanced by oxygen vacancies on Pt-nanoparticle-dispersed gallium oxide. Nano Res 9(6):1689–1700CrossRefGoogle Scholar
  42. 42.
    Chang LW, Chang JH, Yeh JW, Lin HN, Shih HC (2011) Zigzag GaN/Ga2O3 heterogeneous nanowires: synthesis, optical and gas sensing properties. AIP Adv 1(3):032114CrossRefGoogle Scholar
  43. 43.
    Zhu Y, Zhou W, Yu J, Chen Y, Shao Z, Liu M (2016) Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem Mater 28(6):1691–1697CrossRefGoogle Scholar
  44. 44.
    Thomas SR, Adamopoulos G, Lin Y-H, Faber H, Sygellou L, Stratakis E (2014) High electron mobility thin-film transistors based on Ga2O3 grown by atmospheric ultrasonic spray pyrolysis at low temperatures. Appl Phys Lett 105(9):092105CrossRefGoogle Scholar
  45. 45.
    Wang C, Wu D, Wang P, Ao Y, Hou J, Qian J (2015) Effect of oxygen vacancy on enhanced photocatalytic activity of reduced ZnO nanorod arrays. Appl Surf Sci 325:112–116CrossRefGoogle Scholar
  46. 46.
    Ma Y, Wang R, Wang H, Key J, Ji S (2015) Control of MnO2 nanocrystal shape from tremella to nanobelt for enhancement of the oxygen reduction reaction activity. J Power Sources 280:526–532CrossRefGoogle Scholar
  47. 47.
    Sengodan S, Choi S, Jun A, Shin TH, Ju YW, Jeong HY, Shin J, Irvine JTS, Kim G (2015) Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat Mater 14(2):205–209CrossRefGoogle Scholar
  48. 48.
    Zheng Z, Fang Z, Ye X, Yao X, Fu X, Lin S, Liu P (2015) A visualized probe method for localization of surface oxygen vacancy on TiO2: Au in situ reduction. Nanoscale 7:17488–17495CrossRefGoogle Scholar
  49. 49.
    Kang BK, Lim HD, Mang SR, Song KM, Jung MK, Kim S-W, Yoon DH (2015) Synthesis and characterization of monodispersed beta-Ga2O3 nanospheres via morphology controlled Ga4(OH)10SO4 precursors. Langmuir 31(2):833–838CrossRefGoogle Scholar
  50. 50.
    Yang T, Li K, Pu L, Liu Z, Ge B, Pan Y, Liu Y (2016) Hollow-spherical Co/N-C nanoparticle as an efficient electrocatalyst used in air cathode microbial fuel cell. Biosens Bioelectron 86:129–134CrossRefGoogle Scholar
  51. 51.
    Guo XC, Hao NH, Guo DY, Wu ZP, An YH, Chu XL, Li LH, Li PG, Lei M, Tang WH (2016) β-Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity. J Alloys Compd 660:136–140CrossRefGoogle Scholar
  52. 52.
    Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43(22):7520–7535CrossRefGoogle Scholar
  53. 53.
    Li X, Wen J, Low J, Fang Y, Yu J (2014) Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci China Mater 57:70–100CrossRefGoogle Scholar
  54. 54.
    Wen Q, Wang S, Yan J, Cong L, Pan Z, Ren Y, Fan Z (2012) MnO2–graphene hybrid as an alternative cathodic catalyst to platinum in microbial fuel cells. J Power Sources 216:187–191CrossRefGoogle Scholar
  55. 55.
    Ge B, Li K, Fu Z, Pu L, Zhang X (2015) The addition of ortho-hexagon nano spinel Co3O4 to improve the performance of activated carbon air cathode microbial fuel cell. Bioresour Technol 195:180–187CrossRefGoogle Scholar
  56. 56.
    Liu Z, Li K, Zhang X, Ge B, Pu L (2015) Influence of different morphology of three-dimensional CuxO with mixed facets modified air-cathodes on microbial fuel cell. Bioresour Technol 195:154–161CrossRefGoogle Scholar
  57. 57.
    Singh S, Verma N (2015) Fabrication of Ni nanoparticles-dispersed carbon micro-nanofibers as the electrodes of a microbial fuel cell for bio-energy production. Int J Hydrog Energy 40(2):1145–1153CrossRefGoogle Scholar
  58. 58.
    Zhao CE, Wu J, Kjelleberg S, Loo JSC, Zhang Q (2015) Employing a flexible and low-cost polypyrrole nanotube membrane as an anode to enhance current generation in microbial fuel cells. Small 11(28):3440–3443CrossRefGoogle Scholar
  59. 59.
    Jadhav DA, Ghadge AN, Mondal D, Ghangrekar MM (2014) Comparison of oxygen and hypochlorite as cathodic electron acceptor in microbial fuel cells. Bioresour Technol 154:330–335CrossRefGoogle Scholar
  60. 60.
    Assumpção M, De Souza RFB, Rascio DC, Silva JCM, Calegaro ML, Gaubeur I, Paixão TRLC, Hammer P, Lanza MRV, Santosa MC (2011) A comparative study of the electrogeneration of hydrogen peroxide using Vulcan and Printex carbon supports. Carbon 49(8):2842–2851CrossRefGoogle Scholar
  61. 61.
    Tian P, Liu D, Li K, Yang T, Wang J, Liu Y, Zhang S (2017) Porous metal-organic framework Cu3(BTC)2, as catalyst used in air-cathode for high performance of microbial fuel cell. Bioresour Technol 244(Pt 1):206–212CrossRefGoogle Scholar
  62. 62.
    Chen Y, Lv Z, Xu J, Peng D, Liu Y, Chen J, Sun X, Feng C, Wei C (2012) Stainless steel mesh coated with MnO2/carbon nanotube and polymethylphenyl siloxane as low-cost and high-performance microbial fuel cell cathode materials. J Power Sources 201:136–141CrossRefGoogle Scholar
  63. 63.
    Khilari S, Pandit S, Das D, Pradhan D (2014) Manganese cobaltite/polypyrrole nanocomposite-based air-cathode for sustainable power generation in the single-chambered microbial fuel cells. Biosens Bioelectron 54:534–540CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Environmental Science and EngineeringNankai UniversityTianjinChina
  2. 2.MOE Key Laboratory of Pollution Processes and Environmental CriteriaNankai UniversityTianjinChina
  3. 3.Tianjin Key Laboratory of Environmental Remediation and Pollution ControlTianjinChina

Personalised recommendations