Journal of Solid State Electrochemistry

, Volume 23, Issue 11, pp 3075–3088 | Cite as

Hydrogen-bromate flow battery: can one reach both high bromate utilization and specific power?

  • Alexander D. ModestovEmail author
  • Dmitry V. Konev
  • Anatoly E. Antipov
  • Mikhail A. Vorotyntsev
Original Paper


Hydrogen-bromate flow battery is a promising hybrid current source for air-deficient environment that functions by electrocatalyzed reactions of hydrogen oxidation and aqueous LiBrO3 reduction. The flow cell consists of porous carbonaceous cathode, platinum catalyzed hydrogen oxidation gas diffusion anode, and separating proton exchange membrane. Performance of the hydrogen-bromate flow battery single cell has been optimized by varying the catholyte feed rate, LiBrO3 concentration in catholyte, hydrogen pressure, membrane thickness, amount of porous carbon at cathode, and Pt loading at anode. Shape of the I-V curve is characterized by a sharp maximum of current, which indicates passivation of one of the electrodes. Combination of conventional reference electrode and home-made thin-film Luggin capillary has been used to monitor separately the polarizations of both flow cell electrodes. Poisoning of platinum hydrogen oxidation electrocatalyst by bromine species, which permeated the membrane, is shown as a major source of performance losses of hydrogen-bromate flow battery at high power density. Hypothesis supported by experiments claims that the degree of the platinum electrocatalyst poisoning is determined by the balance between the rates of the bromine species supply to anode and their removal by liquid water that permeates the membrane. Use of thinner proton exchange membrane and thinner carbonaceous cathode is a prerequisite to achieving high power density of the cell at high current efficiency of the cathode process. At 40 °C, area-specific power reaches 0.74 W cm−2 at the level of catholyte utilization equal to 0.93.

Graphical abstract


Electrocatalysis Flow battery Bromine Energy conversion Fuel cells Power sources 


Funding information

This research was financially supported by the Russian Ministry of Education and Research (Grant № 14.574.21.0150, UIN RFMEFI57417X0150).


  1. 1.
    Crompton TR (2000) Battery reference book, 3rd edn. Newnes, OxfordGoogle Scholar
  2. 2.
    Garche J, Dyer CK, Moseley PT, Ogumi Z, Rand DAJ, Scrosati B (eds) (2009) Encyclopedia of electrochemical power sources, 1st edn. – Newnes, 2013.Google Scholar
  3. 3.
    Daniel C (ed) (2011) Handbook of battery materials, 2nd edn. Wiley, WeinheimGoogle Scholar
  4. 4.
    Shen PK, Wang C-Y, Jiang SP, Sun X, Zhang J (eds) (2016) Electrochemical energy advanced materials and technologies. CRC press, Boca RatonGoogle Scholar
  5. 5.
    Aifantis E, Hackney SA, Kumar RV (eds) (2010) High energy density lithium batteries. Materials, engineering, applications. Wiley, WeinheimGoogle Scholar
  6. 6.
    Stolten D (ed) (2010) Hydrogen and fuel cells. Fundamentals, technologies and applications. Wiley, WeinheimGoogle Scholar
  7. 7.
    Kim KJ, Park MS, Kim YJ, Kim JH, Dou SX, Skyllas-Kazacos M (2015) A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries. J Mater Chem A 3(33):16913–16933CrossRefGoogle Scholar
  8. 8.
    Leung P, Shah AA, Sanz L, Flox C, Morante JR, Xu Q, Mohamed MR, Ponce de León C, Walsh FC (2017) Recent developments in organic redox flow batteries: a critical review. J Power Sources 360:243–283CrossRefGoogle Scholar
  9. 9.
    Perrya ML, Weber AZ (2016) Advanced redox-flow batteries: a perspective. J Electrochem Soc 163(1):A5064–A5067CrossRefGoogle Scholar
  10. 10.
    Noack J, Roznyatovskaya N, Herr T, Fischer P (2015) The chemistry of redox-flow batteries. Angew Chem Int Ed 54(34):9776–9809CrossRefGoogle Scholar
  11. 11.
    Arenas LF, Ponce de León CP, Walsh FC (2017) Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage. J Energy Storage 11:119–153CrossRefGoogle Scholar
  12. 12.
    Vorotyntsev MA, Tolmachev YV (2014) Fuel cells with chemically regenerative redox cathodes (review). Russ J Electrochem 50:403–411CrossRefGoogle Scholar
  13. 13.
    Rajarathnam GP, Vassallo AM (2016) The zinc/bromine flow battery. Materials challenges and practical solutions for technology advancement. Springer, SydneyCrossRefGoogle Scholar
  14. 14.
    Rubio-Garcia J, Kucernak A, Zhao D, Li D, Fahy K, Yufit V, Brandon N, Gomez-Gonzalez M (2019) Hydrogen/manganese hybrid redox flow battery. J Phys Energy 1:015006CrossRefGoogle Scholar
  15. 15.
    Cho KT, Tucker MC, Weber AZ (2016) A review of hydrogen/halogen flow cells. Energy Technol 4(6):655–678CrossRefGoogle Scholar
  16. 16.
    Zuo W, Li R, Zhou C, Li Y, Xia J, Liu J (2017) Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci 4:1600539CrossRefGoogle Scholar
  17. 17.
    Tolmachev YV, Piatkivskyi A, Ryzhov VV, Konev DV, Vorotyntsev MA (2015) Energy cycle based on a high specific energy aqueous flow battery and its potential use for fully electric vehicles and for direct solar-to-chemical energy conversion. J Solid State Electrochem 19(9):2711–2722CrossRefGoogle Scholar
  18. 18.
    Mussini T, Longhi P (1985) Bromine. In: Bard AJ, Parsons R, Jordan J (eds) Standard potentials in aqueous solutions. IUPAC, Marcel Dekker, New YorkGoogle Scholar
  19. 19.
    Bruno TJ, Lide DR (2015) In: Haynes WM (ed) CRC handbook of chemistry and physics, 97th edn. Boca Raton, CRC PressGoogle Scholar
  20. 20.
    Simmons JP, Waldeck WF (1931) The system lithium bromate-water. J Am Chem Soc 53(5):1725–1727CrossRefGoogle Scholar
  21. 21.
    Mylius F, Funk R (1897) Ueber die Löslichkeit einiger leicht löslicher Salze in Wasser bei 18°. Ber Dtsch Chem Ges 30(2):1716–1725CrossRefGoogle Scholar
  22. 22.
    Vorotyntsev MA, Antipov AE, Konev DV (2017) Bromate anion reduction: novel autocatalytic (EC″) mechanism of electrochemical processes. Its implication for redox flow batteries of high energy and power densities. Pure Appl Chem 89(10):1429–1448CrossRefGoogle Scholar
  23. 23.
    Modestov AD, Konev DV, Tripachev OV, Antipov AE, Tolmachev YV, Vorotyntsev MA (2018) A hydrogen–bromate flow battery for air-deficient environments. Energy Technol 6(2):242–245CrossRefGoogle Scholar
  24. 24.
    Bard AJ, Faulkner LR (eds) (2001) Electrochemical methods fundamentals and applications, vol ch. 12, second edn. Wiley, New York, pp 471–523Google Scholar
  25. 25.
    Vorotyntsev MA, Konev DV, Tolmachev YV (2015) Electroreduction of halogen oxoanions via autocatalytic redox mediation by halide anions: novel EC mechanism. Theory for stationary 1D regime. Electrochim Acta 173:779–795CrossRefGoogle Scholar
  26. 26.
    Vorotyntsev MA, Antipov A (2016) Generalized Nernst layer model: application to bromate anion electroreduction and theory for the stationary 1D regime of proton transport limitations. ChemElectroChem 3:2227–2242CrossRefGoogle Scholar
  27. 27.
    Vorotyntsev MA, Antipov AE (2018) Bromate electroreduction from acidic solution at rotating disc electrode. Theoretical study of the steady-state convective-diffusion transport for excess of bromate ions compared to protons. Electrochim Acta 261:113–126CrossRefGoogle Scholar
  28. 28.
    Côrtes CES, Faria RB (2004) Kinetics and mechanism of bromate− bromide reaction catalyzed by acetate. Inorg Chem 43(4):1395–1402CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Schmitz G (2007) Kinetics of the bromate–bromide reaction at high bromide concentrations. Int J Chem Kinet 39(1):17–21CrossRefGoogle Scholar
  30. 30.
    Vorotyntsev MA, Antipov AE, Tolmachev YV, Antipov EM, Aldoshin SM (2016) Electroreduction of bromate anion in acidic solutions at the inactive rotating disc electrode under steady-state conditions: numerical modeling of the process with bromate anions being in excess compared to protons. Dokl Chem 468(1):141–147CrossRefGoogle Scholar
  31. 31.
    Antipov AE, Vorotyntsev MA (2016) Electroreduction of bromate anion on inactive RDE under steady-state conditions: numerical study of ion transport processes and comproportionation reaction. Russ J Electrochem 52:925–932CrossRefGoogle Scholar
  32. 32.
    Vorotyntsev MA, Antipov AE (2017) Bromate electroreduction from acidic solution at spherical microelectrode under steady-state conditions: theory for the redox-mediator autocatalytic (EC″) mechanism. Electrochim Acta 258:544–553CrossRefGoogle Scholar
  33. 33.
    Modestov AD, Konev DV, Antipov AE, Petrov MM, Pichugov RD, Vorotyntsev MA (2018) Bromate electroreduction from sulfuric acid solution at rotating disk electrode: experimental study. Electrochim Acta 259:655–663CrossRefGoogle Scholar
  34. 34.
    Konev DV, Antipov AE, Petrov MM, Shamraeva MA, Vorotyntsev MA (2018) Surprising dependence of the current density of bromate electroreduction on the microelectrode radius as manifestation of the autocatalytic redox-cycle (EC″) reaction mechanism. Electrochem Commun 86:76–79CrossRefGoogle Scholar
  35. 35.
    Cho KT, Razaulla T (2019) Redox-mediated bromate based electrochemical energy system. J Electrochem Soc 166(2):A286–A296CrossRefGoogle Scholar
  36. 36.
    Petrov MM, Konev DV, Kuznetsov VV, Antipov AE, Glazkov AT, Vorotyntsev MA (2019) Electrochemically driven evolution of Br-containing aqueous solution composition. J Electroanal Chem 836:125–133CrossRefGoogle Scholar
  37. 37.
    Barna GG, Frank SN, Teherani TH, Weedon LD (1984) Lifetime studies in H2/Br2 fuel cells. J Electrochem Soc 131(9):1973–1980CrossRefGoogle Scholar
  38. 38.
    Barna GG, Frank SN, Teherani TH (1982) Oxidation of H2 at gas diffusion electrodes in H2SO4 and HBr. J Electrochem Soc 129(11):2464–2468CrossRefGoogle Scholar
  39. 39.
    Livshits V, Ulus A, Peled E (2006) High-power H2/Br2 fuel cell. Electrochem Commun 8:1358–1362CrossRefGoogle Scholar
  40. 40.
    Cho KT, Tucker MC, Ding M, Ridgway P, Battaglia VS, Srinivasan V, Weber AZ (2015) Cyclic performance analysis of hydrogen/bromine flow batteries for grid-scale energy storage. ChemPlusChem 80(2):402–411CrossRefGoogle Scholar
  41. 41.
    Tucker MC, Cho KT, Weber AZ, Lin G, Nguyen TV (2015) Optimization of electrode characteristics for the Br2/H2 redox flow cell. J Appl Electrochem 45:11–19CrossRefGoogle Scholar
  42. 42.
    Goor-Dar M, Travitsky N, Peled E (2012) Study of hydrogen redox reactions on platinum nanoparticles in concentrated HBr solutions. J Power Sources 197:111–115CrossRefGoogle Scholar
  43. 43.
    Nguyen TV, Kreutzer H, Yarlagadda V (2013) HER/HOR catalysts for the H2-Br2 fuel cell system. ECS Trans 53(7):75–81CrossRefGoogle Scholar
  44. 44.
    Oh K, Weber AZ, Ju H (2017) Study of bromine species crossover in H2/Br2 redox flow batteries. Int J Hydrog Energy 42:3753–3766CrossRefGoogle Scholar
  45. 45.
    Xu J, Scherson D (2013) Quantitative correlations between the normal incidence differential reflectance and the coverage of adsorbed bromide on a polycrystalline platinum rotating disk electrode. Anal Chem 85(5):2795–2801CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Marković NM, Lucas CA, Gasteiger HA, Ross PN (1966) Bromide adsorption on Pt(100): rotating ring-Pt(100) disk electrode and surface X-ray scattering measurements. Surf Sci 365:229–240CrossRefGoogle Scholar
  47. 47.
    Zalitis CM, Kramer D, Kucernak AR (2013) Electrocatalytic performance of fuel cell reactions at low catalyst loading and high mass transport. Phys Chem Chem Phys 15(12):4329–4340CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Weber AZ, Newman J (2004) Modeling transport in polymer-electrolyte fuel cells. Chem Rev 104:4679–4726CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Will FG (1979) Bromine diffusion through Nafion® perfluorinated ion exchange membranes. J Electrochem Soc 126(1):36–43CrossRefGoogle Scholar
  50. 50.
    Li G, Jia Y, Zhang S, Li X, Li J, Li L (2017) The crossover behavior of bromine species in the metal-free flow battery. Appl Electrochem 47:261–272CrossRefGoogle Scholar
  51. 51.
    Yeo RS, McBreen J (1682) Transport properties of Nafion membranes in electrochemically regenerative hydrogen/halogen cells. J Electrochem Soc 126:1682–1687CrossRefGoogle Scholar
  52. 52.
    Park JW, Wycisk R, Pintauro PN (2015) Nafion/PVDF nanofiber composite membranes for regenerative hydrogen/bromine fuel cells. J Membr Sci 490:103–112CrossRefGoogle Scholar
  53. 53.
    Chen Q, Gerhardt MR, Hartle L, Aziz MJ (2016) A quinone-bromide flow battery with 1 W/cm2 power density. J Electrochem Soc 163(1):A5010–A5013CrossRefGoogle Scholar
  54. 54.
    Gerhardt MR, Tong L, Gómez-Bombarelli R, Chen Q, Marshak MP, Galvin CJ, Aspuru-Guzik A, Gordon RG, Aziz MJ (2017) Anthraquinone derivatives in aqueous flow batteries. Adv Energy Mater 7(8):1601488CrossRefGoogle Scholar
  55. 55.
    Cho KT, Albertus P, Battaglia V, Kojic A, Srinivasan V, Weber AZ (2013) Optimization and analysis of high-power hydrogen/bromine-flow batteries for grid-scale energy storage. Energy Technol 1:596–608CrossRefGoogle Scholar
  56. 56.
    Tucker MC, Cho KT, Spingler FB, Weber AZ, Lin G (2015) Impact of membrane characteristics on the performance and cycling of the Br2–H2 redox flow cell. J Power Sources 284:212–221CrossRefGoogle Scholar
  57. 57.
    Park JW, Wycisk R, Lin G, Chong PY, Powers D, Van Nguyen T, Dowd RP, Pintauro PN (2017) Electrospun Nafion/PVDF single-fiber blended membranes for regenerative H2/Br2 fuel cells. J Membr Sci 541:85–92CrossRefGoogle Scholar
  58. 58.
    Darling RM, Weber AZ, Tucker MC, Perry ML (2016) The influence of electric field on crossover in redox-flow batteries. J Electrochem Soc 163(1):A5014–A5022CrossRefGoogle Scholar
  59. 59.
    Wiberg N (ed) (2001) Holleman-Wiberg’s inorganic chemistry. Academic Press, New YorkGoogle Scholar
  60. 60.
    Kusoglu A, Cho KT, Prato RA, Weber AZ (2013) Structural and transport properties of Nafion in hydrobromic-acid solutions. Solid State Ionics 252:68–74CrossRefGoogle Scholar
  61. 61.
    Podgorsek A, Stavber S, Zupan M, Iskra J, Padua AAH, Gomes MFC (2008) Solvation of halogens in fluorous phases. Experimental and simulation data for F2, Cl2, and Br2 in several fluorinated liquids. J Phys Chem B 112(21):6653–6664CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Van Zee NJ, Dragojlovic V (2009) Phase-vanishing reactions with PTFE (Teflon) as a phase screen. Org Lett 11:3190–3193CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Ding C, Zhang H, Li X, Liu T, Xing F (2013) Vanadium flow battery for energy storage: prospects and challenges. J Phys Chem Lett 4(8):1281–1294CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Roe S, Menictas C, Skyllas-Kazacos M (2016) A high energy density vanadium redox flow battery with 3 M vanadium electrolyte. J Electrochem Soc 163(1):A5023–A5028CrossRefGoogle Scholar
  65. 65.
    Kear G, Shah AA, Walsh FC (2012) Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects. Int J Energy Res 36(11):1105–1120CrossRefGoogle Scholar
  66. 66.
    Skyllas-Kazacos M, Chakrabarti MH, Hajimolana SA, Mjalli FS, Saleem M (2011) Progress in flow battery research and development. J Electrochem Soc 158(8):R55–R79CrossRefGoogle Scholar
  67. 67.
    Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu Q (2011) Redox flow batteries: a review. J Appl Electrochem 41:1137CrossRefGoogle Scholar
  68. 68.
    Patnaik P (2003) Handbook of inorganic chemicals. McGraw-Hill, New YorkGoogle Scholar
  69. 69.
    Griffith RO, McKeown A, Winn AG (1932) The bromine-bromide-tribromide equilibrium. Trans Faraday Soc 28:101–107CrossRefGoogle Scholar
  70. 70.
    Wu YC, Feng D (1995) The second dissociation constant of sulfuric acid at various temperatures by the conductometric method. J Solut Chem 24(2):133–144CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RASMoscow GSP-1Russia
  2. 2.D. I. Mendeleev University of Chemical Technology of RussiaMoscowRussia
  3. 3.Institute for Problems of Chemical Physics RASChernogolovkaRussia
  4. 4.M. V. Lomonosov Moscow State UniversityMoscowRussia
  5. 5.ICMUBUMR 6302 CNRS-Université de BourgogneDijonFrance

Personalised recommendations