Journal of Solid State Electrochemistry

, Volume 23, Issue 11, pp 3187–3196 | Cite as

XPS and EIS studies to account for the passive behavior of the alloy Ti-6Al-4V in Hank’s solution

  • Mercedes P. Chávez-Díaz
  • Rosa M. Luna-Sánchez
  • Jorge Vazquez-ArenasEmail author
  • Luis Lartundo-Rojas
  • José M. Hallen
  • Román Cabrera-SierraEmail author
Original Paper


The passivation mechanism of the film formed on the alloy Ti-6Al-4V was evaluated in Hank’s solution to infer the properties of this alloy as an implant material. Alloy passivation was found from electrochemical measurements and X-ray photoelectron spectroscopy (XPS) to strongly depend on the oxidation of Ti and Al, microstructural changes associated with the Al and V, and the formation of metallic hydroxides and oxyhydroxides that disrupt the TiO2 matrix. Experimental impedance diagrams were fitted using the point defect model (PDM, transfer function) to describe the passive character of the alloy. According to this analysis, the transport of oxygen and hydroxide defects across the film on the alloy surface determines the adsorption of oxygen from water dissociation and/or phosphate and the precipitation of calcium phosphate. Therefore, osseointegration of the alloy Ti-6Al-4V occurs across the entire surface and strongly depends on the defects present in the film, Al incorporation, the penetration of hydroxide ions (hydration), and oxygen adsorption.


Titanium Ti-6Al-4V alloy Biomaterials Passivation Point defect model 



This research was financially supported by SIP-IPN multidisciplinary project No. 2019-2011. M.P. Chávez acknowledges the scholarship granted by CONACyT (Mexico) to conduct her doctoral studies. JVA also thanks CONACyT for financial support, “Investigación Científica Básica” 2017‐2018 grant No. A1‐S‐21608.

Supplementary material

10008_2019_4368_MOESM1_ESM.docx (1.5 mb)
ESM 1 (DOCX 1487 kb)


  1. 1.
    Chen Q, Thouas GA (2015) Metallic implant biomaterials. Mater Sci Eng R 87:1–57Google Scholar
  2. 2.
    Ask M, Lausmaa J, Kasemo B (1989) Preparation and surface spectroscopy characterization of oxide film on Ti6Al4V. Appl Surf Sci 35:283–301CrossRefGoogle Scholar
  3. 3.
    Sodhi RNS, Weninger A, Davis JE, Sreenivas K (1991) X-ray photoelectron spectroscopy comparison of sputtered Ti, Ti6Al4V and passive bulk metals for use in cell culture techniques. J Vac Sci Technol A 9:1329–1333CrossRefGoogle Scholar
  4. 4.
    Okazaki Y, Tateishi T, Ito Y (1997) Corrosion resistance of implant alloys in pseudo physiological solution and role of alloying elements in passive films. Mater Trans JIM 38:78–84CrossRefGoogle Scholar
  5. 5.
    Schmidt H, Schminke A, Schmiedgen M, Baretzky B (2001) Compound formation and abrasion resistance of ion-implanted Ti6Al4V. Acta Mater 49:487–495CrossRefGoogle Scholar
  6. 6.
    Feng B, Weng J, Yang BC, Qu SX, Zang XD (2003) Characterization of surface oxide films on titanium and adhesion of osteoblast. Biomaterials 24:4663–4670CrossRefGoogle Scholar
  7. 7.
    Zhu X, Chen J, Scheindeler L, Reichl R, Geis-Gerstorfer J (2004) Effects of topography and composition of titanium surface oxide on osteoblast responses. Biomaterials 25:4087–4103CrossRefGoogle Scholar
  8. 8.
    Einsenbarth E, Velten D, Müller M, Thull R, Breme J (2004) Biocompatibility of beta-stabilizing elements of titanium alloys. Biomaterials 25:5705–5713CrossRefGoogle Scholar
  9. 9.
    Lavos-Valereto C, Wolynec S, Ramires I, Guastaldi C, Costa I (2004) Electrochemical impedance spectroscopy characterization of passive film formed on implant Ti–6Al–7Nb alloy in Hank's solution. J Mater Sci Mater Med 15:55–59CrossRefGoogle Scholar
  10. 10.
    Leach JSL, Pearson BR (1998) Crystallization in anodic oxide films. Corros Sci 28:43–56CrossRefGoogle Scholar
  11. 11.
    Petersson U, Löberg JEL, Fredriksson AS, Ahlberg EK (2009) Semi-conducting properties of titanium dioxide surfaces on titanium implants. Biomaterials 30:4471–4479CrossRefGoogle Scholar
  12. 12.
    Tanaka Y, Nakai M, Akahori T, Niinomi M, Tsutsumi Y, Doi H, Hanawa T (2008) Characterization of air-formed surface oxide film on Ti–29Nb–13Ta–4.6Zr alloy surface using XPS and AES. Corros Sci 50:2111–2116CrossRefGoogle Scholar
  13. 13.
    Ban S, Maruno S (1993) Deposition of calcium phosphate on titanium by electrochemical process in simulated body fluid. Jpn J Appl Phys 32:L1577–L1580Google Scholar
  14. 14.
    Takana Y, Kobayashi E, Hiromoto K, Asami H, Imai H, Hanawa T (2007) Calcium phosphate formation on titanium by low-voltage electrolytic treatments. J Mater Sci Mater Med 18:797–806CrossRefGoogle Scholar
  15. 15.
    Chao CY, Lin LF, Macdonald DD (1981) A point defect model for anodic passive films I. Film growth kinetics. J Electrochem Soc 128:1187–1193Google Scholar
  16. 16.
    Chao CY, Lin LF, Macdonald DD (1981) A point defect model for anodic passive films II. Chemical breakdown and pit initiation. J Electrochem Soc 128:1194–1198Google Scholar
  17. 17.
    Macdonald DD (1992) The point defect model for the passive state. J Electrochem Soc 139:3434–3449Google Scholar
  18. 18.
    Zhang L, Macdonald DD (1998) On the transport of point defects in passive films. Electrochim Acta 43:679–691CrossRefGoogle Scholar
  19. 19.
    Cabrera-Sierra R, Pech-Canul MA, González I (2006) The role of hydroxide in the electrochemical impedance response of passive films in corrosion environments. J Electrochem Soc 153:B101–B107Google Scholar
  20. 20.
    Cabrera-Sierra R, Hallen JM, Vazquez-Arenas J, Vázquez G, González I (2010) EIS characterization of tantalum and niobium oxide films based on a modification of the point defect model. J Electroanal Chem 638:51–58CrossRefGoogle Scholar
  21. 21.
    Cabrera-Sierra R, Vazquez-Arenas J, Cardoso S, Luna-Sánchez RM, Trejo MA, Marín-Cruz J, Hallen JM (2011) Analysis of the formation of Ta2O5 passive films in acid media through mechanistic modeling. Electrochim Acta 56:8040–8047Google Scholar
  22. 22.
    Acevedo-Peña P, Vazquez-Arenas J, Cabrera-Sierra R, Lartundo-Rojas L, González I (2013) Ti anodization in alkaline electrolyte: the relationship between transport of defects, film hydration and composition. J Electrochem Soc 160:C277–C284Google Scholar
  23. 23.
    Milošev I, Metikos-Hukovic M, Strehblow HH (2000) Passive film on orthopaedic TiAlV alloy formed in physiological solution investigated by X-ray photoelectron spectroscopy. Biomaterials 21:2103–2113CrossRefGoogle Scholar
  24. 24.
    Geetha M, Dhinasekaran D, Rajamanickam A (2010) Biomedical implants: corrosion and its prevention—a review. Recent Pat Corros Sci 2:40–54Google Scholar
  25. 25.
    Hanawa T, Asami K, Asaoka K (1997) Repassivation of titanium and surface oxide film regenerated in simulated bioliquid. J Biomed Mater Res Part B 40:530–538CrossRefGoogle Scholar
  26. 26.
    Macdonald DD, Urquidi-Macdonald M (1990) Theory of steady-state passive films. J Electrochem Soc 137:2395–2402Google Scholar
  27. 27.
    Milošev I, Kosec T, Strehblow HH (2008) XPS and EIS study of the passive film formed on orthopaedic Ti–6Al–7Nb alloy in Hank’s physiological solution. Electrochim Acta 53:3547–3558Google Scholar
  28. 28.
    Rtimi S, Pulgarin C, Sanjines R, Nadtochenko V, Lavanchy JC, Kiwi J (2015) Preparation and mechanism of Cu-decorated TiO2-ZrO2 films showing accelerated bacterial inactivation. Appl Mater Interfaces 7:12832–12839Google Scholar
  29. 29.
    Li M, Zhang S, Peng Y, Lv L, Pan B (2015) Enhanced visible light responsive photocatalytic activity of TiO2-based nanocrystallites: impact of doping sequence. RSC Adv 5:7363–7369CrossRefGoogle Scholar
  30. 30.
    Macdonald DD, Smedley SI (1990) An electrochemical impedance analysis of passive films on nickel (111) in phosphate buffer solutions. Electrochim Acta 35:1949–1956CrossRefGoogle Scholar
  31. 31.
    Milošev I, Strehblow HH, Navinšek B, Metikoš-Huković M (1995) Electrochemical and thermal oxidation of TiN coatings studied by XPS. Surf Interface Anal 23:529–539CrossRefGoogle Scholar
  32. 32.
    Castro EB (1994) Analysis of the impedance response of passive iron. Electrochim Acta 39:2117–2123CrossRefGoogle Scholar
  33. 33.
    Zhu R, Nowierski C, Ding Z, Noël JJ, Shoesmith DW (2007) Insights into grain structures and their reactivity on grade-2 Ti alloy surfaces by scanning electrochemical microscopy. Chem Mater 19:2533–2543Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Depto. EnergíaUniversidad Autónoma Metropolitana AzcapotzalcoCiudad de MéxicoMexico
  2. 2.Escuela Superior de Ingeniería Química e Industrias Extractivas, Departamento de Ingeniería Metalurgia y Materiales, UPALM ZacatencoInstituto Politécnico NacionalCiudad de MéxicoMexico
  3. 3.Departamento de QuímicaCONACYT- Universidad Autónoma Metropolitana-IztapalapaIztapalapa CDMXMexico
  4. 4.Centro de Nanociencias y Micro y Nanotecnologías, UPALM ZacatencoInstituto Politécnico NacionalCiudad de MéxicoMexico
  5. 5.Escuela Superior de Ingeniería Química e Industrias Extractivas, Departamento de Ingeniería Química Industrial, UPALM ZacatencoInstituto Politécnico NacionalCiudad de MéxicoMexico

Personalised recommendations