Advertisement

Characterization and evaluation of Nafion HP JP as proton exchange membrane: transport properties, nanostructure, morphology, and cell performance

  • Michael S. A. Kamel
  • Hamdy F. M. Mohamed
  • M. O. Abdel-Hamed
  • E. E. Abdel-HadyEmail author
Original Paper
  • 87 Downloads

Abstract

In this study, a novel membrane (Nafion HP JP) was studied and investigated intensively for use as a proton exchange membrane for fuel cell. A standard membrane, Nafion NRE212, was also studied under the same conditions for comparison. Fourier transform infrared spectroscopy, thermogravimetric analysis, wide-angle x-ray diffraction, atomic force microscope (AFM), proton conductivity, and mechanical test were used to study the structure and properties of the membranes. In addition, methanol permeability was measured as a function of methanol concentration. Nafion HP JP membrane exhibited a lower methanol permeability over the concentration range studied. Furthermore, Nafion HP JP has Young’s modulus of 88.3 MPa and tensile strength of 13.2 MPa which are higher than those of Nafion NRE212 (39.85 and 9.5 MPa, respectively). AFM data confirmed the higher value of water uptake for Nafion HP JP membrane. Free volume distribution data measured using positron annihilation lifetime (PAL) showed that the novel membrane has a smaller free volume hole size than that of Nafion NRE212. Moreover, the cell performance of the single cell test using the investigated membrane, hydrogen as fuel and oxygen as oxidant, was investigated at different temperatures and humidities. The power density delivered using Nafion HP JP is higher than that from Nafion NRE212 especially at 50 °C and 30% relative humidity. In addition, the membrane durability of both samples was performed for about 220 h and Nafion HP JP has an open circuit voltage reduction rate of 0.136 mV/h that nearly half that for Nafion NRE212 membrane. The optimal concentration for direct methanol fuel cell DMFC operation using both membranes was found to be 2 M which totally agrees with methanol permeability and PAL data. The obtained results reflect that Nafion HP JP shows great potential for fuel cell applications.

Keywords

Polymer electrolyte membrane Polarization curve Mechanical properties Proton conductivity Methanol permeability Nafion Durability 

Notes

Acknowledgments

One of the authors (H.F.M. Mohamed) is grateful to A. Ohira of Fuel Cell Cutting-Edge Center (FC-Cubic), Technology Research Association, Japan for enlightening suggestions.

Funding information

The Science &Technology Development Fund (STDF), Egypt, provided financial support throughout the project (ID15113).

References

  1. 1.
    Granovskii M, Dincer I, Rosen MA (2006) Life cycle assessment of hydrogen fuel cell and gasoline vehicles. Int J Hydrog Energy 31(3):337–352Google Scholar
  2. 2.
    Yan J, Huang X, Moore HD, Wang CY, Hickner MA (2012) Transport properties and fuel cell performance of sulfonatedpoly(imide) proton exchange membranes. Int J Hydrog Energy 37(7):6153–6160Google Scholar
  3. 3.
    Wright AG, Fan J, Britton B, Weissbach T, Lee HF, Kitching EA, Holdcroft S (2016) Hexamethyl-p-terphenyl poly (benzimidazolium): a universal hydroxide-conducting polymer for energy conversion devices. Energy Enviro Sci 9(6):2130–2142Google Scholar
  4. 4.
    Vielstich W, Lamm A, Gasteiger HA (2003) Handbook of fuel cells: fundamentals, technology, and applications. Wiley, New YorkGoogle Scholar
  5. 5.
    Grove WR (1839) XXIV. On voltaic series and the combination of gases by platinum. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 14(86-87):127–130Google Scholar
  6. 6.
    Grove WR (1842) LXXII. On a gaseous voltaic battery. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 21(140):417–420Google Scholar
  7. 7.
    Gubler L, Scherer GG (2008) A proton-conducting polymer membrane as solid electrolyte–function and required properties, In Fuel Cells I (pp. 1–14). Springer, Berlin, HeidelbergGoogle Scholar
  8. 8.
    Yang S, Gong C, Guan R, Zou H, Dai H (2006) Sulfonated poly (phenylene oxide) membranes as promising materials for new proton exchange membranes. Polym Adv Technol 17(5):360–365Google Scholar
  9. 9.
    Abdel-Hady EE, Abdel-Hamed MO, Gomaa MM (2013) Preparation and characterization of commercial polyethylene terephthalate membrane for fuel cell applications. J Membra Sci Technol 3:1000122-1-1000122-8Google Scholar
  10. 10.
    Carrette L, Friedrich KA, Stimming U (2001) Fuel cells -fundamentals and application. Fuel Cells 1:15–39Google Scholar
  11. 11.
    Chien HC, Tsai LD, Lai CM, Lin JN, Zhu CY, Chang FC (2013) Characteristics of high-water-uptake activated carbon/Nafion hybrid membranes for proton exchange membrane fuel cells. J Power Sources 226:87–93Google Scholar
  12. 12.
    Wang Y, Chen KS, Mishler J, Cho SC, Adroher X (2011) A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy 88(4):981–1007Google Scholar
  13. 13.
    Hoogers G (ed) (2002) Fuel cell technology handbook. CRC press, New YorkGoogle Scholar
  14. 14.
    De Bruijn FA, Dam VAT, Janssen GJM (2008) Durability and degradation issues of PEM fuel cell components. Fuel Cells 8(1):3–22Google Scholar
  15. 15.
    Abdel-Hady EE, Eltonny MM, Abdel-Hamed MO (2011) Positronium formation of glyeisdyl methacrylic acid (GMA)/styrene grafted on PVDF membrane for fuel cells. In AIP Conf Proc 1336:541–544Google Scholar
  16. 16.
    Larminie J, Dicks A, McDonald MS (2003) Fuel cell systems explained, Chichester, UK: J. Wiley 2:207–225Google Scholar
  17. 17.
    Meenakshi S, Sahu AK, Bhat SD, Sridhar P, Pitchumani S, Shukla AK (2013) Mesostructured-aluminosilicate-Nafion hybrid membranes for direct methanol fuel cells. Electrochim Acta 89:35–44Google Scholar
  18. 18.
    Shi S, Dursch TJ, Blake C, Mukundan R, Borup RL, Weber AZ, Kusoglu A (2016) Impact of hygrothermal aging on structure/function relationship of perfluorosulfonic-acid membrane. J Polym Sci B Polym Phys 54(5):570–581Google Scholar
  19. 19.
    Rodgers MP, Bonville LJ, Mukundan R, Borup RL, Ahluwalia R, Beattie P, Fenton JM (2013) Perfluorinated sulfonic acid membrane and membrane electrode assembly degradation correlating accelerated stress testing and lifetime testing. ECS Trans 58(1):129–148Google Scholar
  20. 20.
    Collette FM, Thominette F, Escribano S, Ravachol A, Morin A, Gebel G (2012) Fuel cell rejuvenation of hygrothermally aged Nafion®. J Power Sources 202:126–133Google Scholar
  21. 21.
    Naudy S, Collette F, Thominette F, Gebel G, Espuche E (2014) Influence of hygrothermal aging on the gas and water transport properties of Nafion® membranes. J Membr Sci 451:293–304Google Scholar
  22. 22.
    Shi S, Chen G, Wang Z, Chen X (2013) Mechanical properties of Nafion 212 proton exchange membrane subjected to hygrothermal aging. J Power Sources 238:318–323Google Scholar
  23. 23.
    Seong Y, Won J, Kim S, Nam K, Kimd S, Kim D (2011) Synthesis and characterization of proton exchange membranes based on sulfonatedpoly(fluorenyl ether nitrile oxynaphthalate) for direct methanol fuel cells. Int J Hydrog Energy 36(14):8492–8498Google Scholar
  24. 24.
    Zhong S, Cui X, Fu T, Na H (2008) Modification of sulfonated poly (ether ether ketone) proton exchange membrane for reducing methanol crossover. J Power Sources 180(1):23–28Google Scholar
  25. 25.
    Li H, Wu J, Zhao C, Zhang G, Zhang Y, Shao K, Na H (2009) Proton-conducting membranes based on benzimidazole-containing sulfonated poly (ether ether ketone) compared with their carboxyl acid form. Int J Hydrog Energy 34(20):8622–8629Google Scholar
  26. 26.
    Zhang Y, Shao K, Zhao C, Zhang G, Li H, Fu T, Na H (2009) Novel sulfonated poly (ether ether ketone) with pendant benzimidazole groups as a proton exchange membrane for direct methanol fuel cells. J Power Sources 194(1):175–181Google Scholar
  27. 27.
    Abdel-Hamed MO (2018) Styrene grafted ethylene chlorotrifluoroethylene (ECTFE-g-PSSA) protonic membranes: preparation, characterization, and transport mechanism. Polym Adv Technol 29(1):658–667Google Scholar
  28. 28.
    Ahmad H, Kamarudin SK, Hasran UA, Daud WW (2010) Overview of hybrid membranes for direct-methanol fuel-cell applications. Int J Hydrog Energy 35(5):2160–2175Google Scholar
  29. 29.
    Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrog Energy 35(17):9349–9384Google Scholar
  30. 30.
    Shen L, SunZ CY, Zou J, Deshusses MA (2015) Novel sulfonated Nafion®-based composite membranes with pillararene as selective artificial proton channels for application in direct methanol fuel cells. Int J Hydrog Energy 40(38):13071–13079Google Scholar
  31. 31.
    Mohamed HFM, Abdel-Hady EE, Ohira A (2015) Per-fluorinated sulfonic acid/PTFE copolymer studied by positron annihilation lifetime and gas permeation techniques. J Phys Conf Ser 618:012031-1-102031-4Google Scholar
  32. 32.
    Mohamed HFM, Kuroda S, Kobayashi Y, Oshima N, Suzuki R, Ohira A (2013) Possible presence of hydrophilic SO3H nanoclusters on the surface of dry ultrathin Nafion® films: a positron annihilation study. Phys Chem Chem Phys 15(5):1518–1525Google Scholar
  33. 33.
    Mohamed HFM, Kobayashi Y, Kuroda S, Ohira A (2013) Positronium lifetimes and gas permeation in Aquivion® for fuel cells. Mater Sci Forum 733:61–64Google Scholar
  34. 34.
    Mohamed HFM, Kobayashi Y, Kuroda S, Ohira A (2012) Positron trapping and possible presence of SO3H clusters in dry fluorinated polymer electrolyte membranes. Chem Phys Lett 544:49–52Google Scholar
  35. 35.
    Abdel-Hady EE, Abdel-Hamed MO, Awad S, Hmamm MFM (2018) Characterization and evaluation of commercial poly (vinylidene fluoride)-g-sulfonatedPolystyrene as proton exchange membrane. Polym Adv Technol 29(1):130–142Google Scholar
  36. 36.
    Rambabu G, Bhat SD (2015) Sulfonated fullerene in SPEEK matrix and its impact on the membrane electrolyte properties in direct methanol fuel cells. Electrochim Acta 176:657–669Google Scholar
  37. 37.
    Tricoli V (1998) Proton and methanol transport in poly (perfluorosulfonate) membranes containing Cs+ and H+ cations. J Electrochem Soc 145(11):3798–3801Google Scholar
  38. 38.
    He S, Lin Y, Wei Z, Zhang L, Lin J, Nazarenko S (2015) Solvent-free fabrication of proton-conducting membranes based on commercial elastomers. Polym Adv Technol 26(4):300–307Google Scholar
  39. 39.
    Bakar NY, Isa MIN (2014) Potential of ionic conductivity and transport properties solid biopolymer electrolytes based carboxymethlcellulose/chitosan polymer blend doped with dodecyltrimethyl ammonium bromide. Res J Recent Sci 3:69–74Google Scholar
  40. 40.
    Procházka I (2001) Positron annihilation spectroscopy. Mater Struct 8:55–60Google Scholar
  41. 41.
    Constantin F, Barna C, Mereuta P (2015) Positron annihilation spectroscopy studies of proton exchange membranes used in fuel cells. Polym Adv Technol 26(12):1528–1530Google Scholar
  42. 42.
    Jean YC, Mallon PE, Schrader DM (2003) Principles and applications of positron & positronium chemistry. World Scientific, USAGoogle Scholar
  43. 43.
    Olsen JV, Kirkegaard P, Pedersen NJ, Eldrup M (2007) PALSfit: a new program for the evaluation of positron lifetime spectra. Phys Status Solidi C 4(10):4004–4006Google Scholar
  44. 44.
    De Almeida SH, Kawano Y (1999) Thermal behavior of Nafion membranes. J Therm Anal Calorim 58(3):569–577Google Scholar
  45. 45.
    Li T, Zhong G, Fu R, Yang Y (2010) Synthesis and characterization of Nafion/cross-linked PVP semi-interpenetrating polymer network membrane for direct methanol fuel cell. J Membra Sci 354(1-2):189–197Google Scholar
  46. 46.
    Abd El Keriem MS (2015) Effect of low gamma-irradiated dose on the structure of cellulose triacetate films: II. Positron annihilation spectroscopy. Amer J Polym Sci 5:35–40Google Scholar
  47. 47.
    Gruger A, Régis A, Schmatko T, Colomban P (2001) Nanostructure of Nafion® membranes at different states of hydration: an IR and Raman study. Vib Spectrosc 26(2):215–225Google Scholar
  48. 48.
    Kundu S, Simon LC, Fowler MW (2008) Comparison of two accelerated Nafion™ degradation experiments. Polym Degrad Stab 93(1):214–224Google Scholar
  49. 49.
    Falk M (1980) An infrared study of water in perfluorosulfonate (Nafion) membranes. Can J Chem 58(14):1495–1501Google Scholar
  50. 50.
    Laporta M, Pegoraro M, Zanderighi L (2000) Recast Nafion-117 thin film from water solution. Macromol Mater Eng 282(1):22–29Google Scholar
  51. 51.
    Fujimura M, Hashimoto T, Kawai H (1981) Small-angle X-ray scattering study of perfluorinated ionomer membranes. 1. Origin of two scattering maxima. Macromolecules 14(5):1309–1315Google Scholar
  52. 52.
    Lin J, Wycisk R, Pintauro PN, Kellner M (2007) Stretched recast Nafion for direct methanol fuel cells. Electrochem Solid-State Lett 10(1):B19–B22Google Scholar
  53. 53.
    Blanton TN, Koestner R (2015) Characterization of Nafion proton exchange membrane films using wide-angle X-ray diffraction. JCPDS-International Centre for Diffraction Data 1097:128–136Google Scholar
  54. 54.
    Tadokoro H (1979) Structure of crystalline polymer. John Wiley & Sons, New YorkGoogle Scholar
  55. 55.
    Haojun F, Bi S, Shifang L, Zhenji D (2002) Nanocomposite of protein-silica (titanium) organic-inorganic hybrid-a novel concept of leather making. China Leather 1:01Google Scholar
  56. 56.
    Bailly C, Williams DJ, Karasz FE, MacKnight WJ (1987) The sodium salts of sulphonated poly (aryl-ether-ether-ketone) (PEEK): preparation and characterization. Polymer 28(6):1009–1016Google Scholar
  57. 57.
    El Kaddouri A, Perrin JC, Colinart T, Moyne C, Leclerc S, Guendouz L, Lottin O (2016) Impact of a compressive stress on water sorption and diffusion in ionomer membranes for fuel cells. A 1H NMR study in vapor-equilibrated Nafion. Macromolecules 49(19):7296–7307Google Scholar
  58. 58.
    Freger V (2009) Hydration of ionomers and Schroeder's paradox in Nafion. J Phys Chem B113:24–36Google Scholar
  59. 59.
    Li L, Su L, Zhang Y (2012) Enhanced performance of supercritical CO2 treated Nafion 212 membranes for direct methanol fuel cells. Int J Hydrog Energy 37(5):4439–4447Google Scholar
  60. 60.
    Peron J, Mani A, Zhao X, Edwards D, Adachi M, Soboleva T, Holdcroft S (2010) Properties of Nafion® NR-211 membranes for PEMFCs. J Membr Sci 356(1-2):44–51Google Scholar
  61. 61.
    Mohamed HFM, Abdel-Hady EE, Abdel-Hamed MO, Said M (2017) Microstructure characterization of Nafion HP JP as a proton exchange membrane for fuel cell: positron annihilation study. Acta Phys Pol A132:1543–1547Google Scholar
  62. 62.
    Mohamed HFM, Kobayashi Y, Kuroda CS, Ohira A (2011) Impact of heating on the structure of perfluorinated polymer electrolyte membranes: a positron annihilation study. Macromol Chem Phys 212(7):708–714Google Scholar
  63. 63.
    Druger SD, Nitzam A, Ratner MA (1985) Generalized hopping model for the frequency dependent transport in a dynamically disordered medium, with applications to polymer solid electrolytes. Phys Rev B31:3939–3947Google Scholar
  64. 64.
    Hema M, Selvasekarapandian S, Nithya H, Sakunthala A, Arunkumar D (2009) Structural and ionic conductivity studies on proton conducting polymer electrolyte based on polyvinyl alcohol. Ionics 15:487–491Google Scholar
  65. 65.
    Agmon N (1995) The Grotthuss mechanism. Chem Phys Lett 244(5-6):456–462Google Scholar
  66. 66.
    Loureiro F, de Marins ES, dos Anjos GDC, Rocco AM, Pereira RP (2014) Proton conductive membranes based on poly (styrene-co-allyl alcohol) semi-IPN. Polímeros 24(ESP):49–56Google Scholar
  67. 67.
    Nagarale RK, Gohil GS, Shahi VK (2006) Sulfonated poly (ether ether ketone)/polyaniline composite proton-exchange membrane. J Membr Sci 280(1-2):389–396Google Scholar
  68. 68.
    Li L, Zhang J, Wang Y (2003) Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell. J Membr Sci 226(1-2):159–167Google Scholar
  69. 69.
    Weber AZ, Newman J (2004) Transport in polymer-electrolyte membranes II. Mathematical model. J Electrochem Soc 151(2):A311–A325Google Scholar
  70. 70.
    Ahmed M, Dincer I (2011) A review on methanol crossover in direct methanol fuel cells: challenges and achievements. Int J Energy Res 35(14):1213–1228Google Scholar
  71. 71.
    Mohamed HFM, Kobayashi Y, Kuroda CS, Takimoto N, Ohira A (2010) Free volume, oxygen permeability, and uniaxial compression storage modulus of hydrated biphenol-based sulfonated poly (arylene ether sulfone). J Membr Sci 360(1-2):84–89Google Scholar
  72. 72.
    Wang J, Xiao L, Zhao Y, Wu H, Jiang Z, Hou W (2009) A facile surface modification of Nafion membrane by the formation of self-polymerized dopamine nano-layer to enhance the methanol barrier property. J Power Sources 192(2):336–343Google Scholar
  73. 73.
    Yang T (2009) Poly (vinyl alcohol)/sulfated β-cyclodextrin for direct methanol fuel cell applications. Int J Hydrog Energy 34(16):6917–6924Google Scholar
  74. 74.
    Wang Y, Yang D, Zheng X, Jiang Z, Li J (2008) Zeolite beta-filled chitosan membrane with low methanol permeability for direct methanol fuel cell. J Power Sources 183(2):454–463Google Scholar
  75. 75.
    Satterfield MB, Majsztrik PW, Ota H, Benziger JB, Bocarsly AB (2006) Mechanical properties of Nafion and titania/Nafion composite membranes for polymer electrolyte membrane fuel cells. J Polym Sci B Polym Phys 44(16):2327–2345Google Scholar
  76. 76.
    Tao SJ (1972) Positronium annihilation in molecular substances. J Chem Phys 56(11):5499–5510Google Scholar
  77. 77.
    Eldrup M, Lightbody D, Sherwood JN (1981) The temperature dependence of positron lifetimes in solid pivalic acid. Chem Phys 63(1-2):51–58Google Scholar
  78. 78.
    Sawada S, Kawasuso A, Maekawa M, Yabuuchi A, Maekawa Y (2010) Free-volume structure of fluoropolymer-based radiation-grafted electrolyte membranes investigated by positron annihilation lifetime spectroscopy. J Phys Conf Ser 225:012048-1-012048-6Google Scholar
  79. 79.
    El-Toony MM, Abdel-Hady EE, El-Kelsh NA (2014) Casting of poly hydroxybutarate/poly (vinyl alcohol) membranes for proton exchange fuel cells. Electrochim Acta 150:290–297Google Scholar
  80. 80.
    Huang X, Zhang Z, Jiang J (2006) Fuel cell technology for distributed generation: an overview. In 2006 IEEE international symposium on industrial electronics 2:1613-1618Google Scholar
  81. 81.
    Ellabban O, Mierlo JV, Lataire P (2011) A DSP-based dual loop digital controller design and implementation of a high power boost converter for hybrid electric vehicles applications. J Power Electronics 11(2):113–119Google Scholar
  82. 82.
    Yin C, Wang L, Li J, Zhou Y, Zhang H, Fang P, He C (2017) Positron annihilation characteristics, water uptake and proton conductivity of composite Nafion membranes. Phys Chem Chem Phys 19(24):15953–15961Google Scholar
  83. 83.
    Liu JG, Zhao TS, Chen R, Wong CW (2005) The effect of methanol concentration on the performance of a passive DMFC. Electrochem Commun 7(3):288–294Google Scholar
  84. 84.
    Najmi AA, Rowshanzamir S, Parnian MJ (2016) Investigation of NaOH concentration effect in injected fuel on the performance of passive direct methanol alkaline fuel cell with modified cation exchange membrane. Energy 94:589–599Google Scholar
  85. 85.
    Li C, Yang Z, Liu X, Zhang Y, Dong J, Zhang Q, Cheng H (2017) Enhanced performance of sulfonated poly (ether ether ketone) membranes by blending fully aromatic polyamide for practical application in direct methanol fuel cells (DMFCs). Int J Hydrog Energy 42(47):28567–28577Google Scholar
  86. 86.
    Walsby N, Paronen M, Juhanoja J, Sundholm F (2001) Sulfonation of styrene-grafted poly (vinylidene fluoride) films. J Appl Polym Sci 81(7):1572–1580Google Scholar
  87. 87.
    Ketpang K, Son B, Lee D, Shanmugam S (2015) Porous zirconium oxide nanotube modified Nafion composite membrane for polymer electrolyte membrane fuel cells operated under dry conditions. J Membra Sci 488:154–165Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Michael S. A. Kamel
    • 1
  • Hamdy F. M. Mohamed
    • 1
  • M. O. Abdel-Hamed
    • 1
  • E. E. Abdel-Hady
    • 1
    Email author
  1. 1.Physics Department, Faculty of ScienceMinia UniversityMiniaEgypt

Personalised recommendations