Passivity of titanium, part IV: reversible oxygen vacancy generation/annihilation

  • Bumwook Roh
  • Digby D. MacdonaldEmail author
Original Paper


A simplified Point Defect Model incorporating reversible oxygen vacancy generation/annihilation at the metal/film interface has been used to investigate the impedance of anodized titanium in 0.5 M H2SO4, the oxygen vacancy profile in the anodic titanium oxide film, and the surface oxygen vacancy concentration. This simplified Point Defect Model (PDM), which considers the oxygen vacancy as the only point defect in the film, successfully accounts for the impedance of anodized titanium over the potential range explored. The results indicate that there is a thin region of the non-uniform oxygen vacancy concentration adjacent to the film/solution interface, which has an exponentially decreasing dopant (\( {V}_O^{\cdot \cdot } \)) concentration. The results of the investigation show that the surface oxygen vacancy concentration normalized to the bulk oxygen vacancy concentration is in the range of 0.05–0.15 and is essentially independent of potential.


Titanium Anodic oxide film Oxygen vacancy 



The authors gratefully acknowledge the support of this work at the Pennsylvania State University by the US Department of Energy through Grant No. DE-FG02-01ER15238 and by the Hyundai Motor Company. Additionally, Investigator No. 2 gratefully acknowledges the partial support of this work by FUTURE (Fundamental Understanding of Transport Under Reactor Extremes), an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) (neutron scattering studies).


  1. 1.
    Roh B-W, Macdonald DD (2019) Passivity of titanium: part II, the defect structure of the anodic oxide film. J Solid State Electrochem 23(7):1967–1979Google Scholar
  2. 2.
    Macdonald DD, Roh B-W (2007) Impact of oxygen vacancies in anodic titanium oxide films on the kinetics of the oxygen electrode reaction - in honor of Dr. Boris Grafov. Russ J Electrochem 43(2):125CrossRefGoogle Scholar
  3. 3.
    Chen G, Cho H, Macdonald DD, Mallouk TE, Warakas CC (2003) EIS studies of porous oxygen electrodes with discrete particles: I: Impedance of catalyst oxide supports. J Electrochem Soc 150(9):E423–E428CrossRefGoogle Scholar
  4. 4.
    Chen G, Macdonald DD, Mallouk TE, Waraksa CC (2003) EIS studies of porous oxygen electrodes with discrete particles: II, Transmission line modeling. J Electrochem Soc 150(9):E429–E437CrossRefGoogle Scholar
  5. 5.
    Sikora E, Sikora J, Macdonald DD (1996) Electrochim Acta 41(6):783–789CrossRefGoogle Scholar
  6. 6.
    Sikora J, Sikora E, Macdonald DD (2000) Electrochim Acta 45(12):1875–1883CrossRefGoogle Scholar
  7. 7.
    Chao C-Y, Lin L-F, Macdonald DD (1982) J Electrochem Soc 129(9):1874CrossRefGoogle Scholar
  8. 8.
    Macdonald DD, Sun A, Priyantha N, Jayaweera P (2004) J Electroanal Chem 572(2):421–431CrossRefGoogle Scholar
  9. 9.
    Macdonald DD (1992) J Electrochem Soc 139(12):3434CrossRefGoogle Scholar
  10. 10.
    Macdonald DD (1999) Pure Appl Chem 71(6):951–978CrossRefGoogle Scholar
  11. 11.
    Macdonald DD, Smedley SI (1990) Electrochim Acta 35(11-12):1949–1956CrossRefGoogle Scholar
  12. 12.
    Macdonald DD (1977) Transient techniques in electrochemistry. Plenum Press, New YorkCrossRefGoogle Scholar
  13. 13.
    Marsh J, Gorse D (1998) Electrochim Acta 43(7):659–670CrossRefGoogle Scholar
  14. 14.
    Ohtsuka T, Masudo M, Sato N (1985) J Electrochem Soc 132(4):787CrossRefGoogle Scholar
  15. 15.
    Engelhardt GR, Kursten B, Macdonald DD (2019) On the nature of the electric field within the barrier layer of a passive film. Electrochimica Acta 313:367–377Google Scholar
  16. 16.
    Nelder JA, Mead R (1965) Comput J 7(4):308–313CrossRefGoogle Scholar
  17. 17.
    Mathews JH, Fink KD (2004) Numerical Methods Using Matlab. Prentice-Hall Inc, Upper Saddle RiverGoogle Scholar
  18. 18.
    Zhang L, Macdonald DD, Sikora E, Sikora J (1998) J Electrochem Soc 898:145Google Scholar
  19. 19.
    Beck TR (1973) J Electrochem Soc 120(10):1310CrossRefGoogle Scholar
  20. 20.
    Ellerbrock D (1998) Defect characterization of titanium passive films, Ph. D. Dissertation, Penn State Univ., University Park, PAGoogle Scholar
  21. 21.
    Frayret C, Jaszay T, Lestienne B, Delville MH (2003) Electrochim Acta 48(12):1685–1695CrossRefGoogle Scholar
  22. 22.
    Bockris JOM, Reddy AKN, Aldeco MG (2002) Modern Electrochemistry, volume 2A, Fundamentals of electrodics. Kluwer Academic/Plenum Publishers, DordrechtGoogle Scholar
  23. 23.
    Pensado-Rodriguez O, Flores JR, Urquidi-Macdonald M, Macdonald DD (1999) J Electrochem Soc 146(4):1326CrossRefGoogle Scholar
  24. 24.
    Macdonald DD (2005) Final technical report for the fundamental role of nano-scale oxide films in the oxidation of hydrogen and the reduction of oxygen on noble metal electrocatalysts, Grant No. DE-FG02-01ER15238Google Scholar
  25. 25.
    Zhu Y-C (1994) Elcetrochemical and surface analysis of anodic oxide film on titanium and stochastic analysis of pit generation processes on anodized titanium, Ph. D. Dissertation, Osaka University, Osaka, JapanGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hyundai Motor CompanyMabuk-RiRepublic of Korea
  2. 2.Departments of Nuclear EngineeringUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations