Structures and photoelectrochemical performances of reduced TiO2 NTAs obtained by hydrogen thermal and electrochemical reduction methods

  • Guangqing XuEmail author
  • Qiang Feng
  • Zhiwei Wang
  • Jun Lv
  • Jun Huang
  • Yong Li
  • Pengjie ZhangEmail author
  • Yucheng WuEmail author
Original Paper


Reduced TiO2 nanotube arrays were obtained by hydrogen-thermal and electrochemical reduction methods respectively, and the photoelectrochemical performances were studied. Phase structures, elemental compositions, and surficial morphologies were characterized with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) to investigate the structural differences between as-prepared TiO2 NTAs and reduced TiO2 NTAs, including two different reducing products. The photoelectrochemical performances of TiO2 NTAs were found to be enhanced by both two reducing methods. The different mechanisms of hydrogen-thermal reduction and electrochemical reduction were investigated by comparing optical absorption, charge transport, separation efficiency of charge carriers, and surficial reactions during the photoelectrochemical processes. For hydrogen-thermal-reduced TiO2 NTAs, the improved photoelectrochemical performances are induced by high optical absorption and low recombination of charge carries, whereas for electrochemical reduced TiO2 NTAs, the enhanced performances are attributed to low charge transport resistance.


Reduced TiO2 nanotubes arrays Photoelectrochemistry Hydrogen thermal reduction Electrochemical reduction 


Funding information

This work was financially supported by the 111 Project “New Materials and Technology for Clean Energy” (B18018) and the Key Technologies R & D Program of Anhui Province (1704c0402195).


  1. 1.
    Babu VJ, Vempati S, Uyar T, Ramakrishna S (2015) Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation. Phys Chem Chem Phys 17(5):2960–2986CrossRefGoogle Scholar
  2. 2.
    Li R, Weng Y, Zhou X, Wang X, Mi Y, Chong R, Han H, Li C (2015) Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases. Energy Environ Sci 00:1–6Google Scholar
  3. 3.
    Mohajernia S, Hejazi S, Mazare A, Nguyen NT, Schmuki P (2017) Photoelectrochemical H2 generation from suboxide TiO2 nanotubes: visible light absorption versus conductivity. Chemistry 23(50):12406–12411CrossRefGoogle Scholar
  4. 4.
    Aritonang AB, Surahman H, Krisnandi YK, Gunlazuardi J (2017) Photo-electro-catalytic performance of highly ordered nitrogen doped TiO2 nanotubes array photoanode. Mater Sci Eng 172:1757–1767Google Scholar
  5. 5.
    Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2007) High efficiency double heterojunction polymer photovoltaic cells using highly ordered TiO2 nanotube arrays. Nano Lett 91(15):152111–152114Google Scholar
  6. 6.
    Regonini D, Bowen CR, Jaroenworaluck A, Stevens R (2013) A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater Sci Eng R Rep 74(12):377–406CrossRefGoogle Scholar
  7. 7.
    Gao X, Liu X, Zhu Z, Wang X, Xie Z (2016) Enhanced photoelectrochemical and photocatalytic behaviors of MFe2O4 (M=Ni, Co, Zn and Sr) modified TiO2 nanorod arrays. Sci Rep 6(1):30543–30554CrossRefGoogle Scholar
  8. 8.
    Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Cheminform 107:2891–2959Google Scholar
  9. 9.
    He X, Cai Y, Zhang H, Liang C, Zhang H, Liang C (2011) Photocatalytic degradation of organic pollutants with ag decorated free-standing TiO2 nanotube arrays and interface electrochemical response. Mater Chem 21(2):475–480CrossRefGoogle Scholar
  10. 10.
    Gao ZD, Liu HF, Li CY, Song YY (2013) Biotemplated synthesis of au nanoparticles-TiO2 nanotube junctions for enhanced direct electrochemistry of heme proteins. Chem Commun 49(8):774–776CrossRefGoogle Scholar
  11. 11.
    Teng W, Wang Y, Huang H, Li X, Tang Y (2017) Enhanced photoelectrochemical performance of MoS2 nanobelts-loaded TiO2 nanotube arrays by photo-assisted electrodeposition. Appl Surf Sci 425:507–517CrossRefGoogle Scholar
  12. 12.
    Feng W, Lin L, Li H, Chi B, Pu J, Li J (2017) Hydrogenated TiO2/ZnO heterojunction nanorod arrays with enhanced performance for photoelectrochemical water splitting. Int J Hydrogen Energ 42(7):3938–3946CrossRefGoogle Scholar
  13. 13.
    Koo MS, Cho K, Yoon J, Choi W (2017) Photoelectrochemical degradation of organic compounds coupled with molecular hydrogen generation using electrochromic TiO2 nanotube arrays. Environ Sci Technol 51(11):6590–6598CrossRefGoogle Scholar
  14. 14.
    Wu H, Li D, Zhu X, Yang C, Liu D, Chen X, Song Y, Lu L, Chen X, Song Y, Lu L (2014) High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach. Electrochim Acta 116:129–136CrossRefGoogle Scholar
  15. 15.
    Ling W, Fang L, Xu Y, Zhang JW, Zhang D, Li G, Li H (2015) Plasmon-induced photoelectrocatalytic activity of au nanoparticles enhanced TiO2 nanotube arrays electrodes for environmental remediation. Appl Catal B-Environ 164:217–224CrossRefGoogle Scholar
  16. 16.
    Liu J, Ruan L, Adeloju SB, Cheng Y (2014) BiOI/TiO2 nanotube arrays a unique flake-tube structured p-n junction with remarkable visible-light photoelectrocatalytic performance and stability. Dalton Trans 43(4):1706–1715CrossRefGoogle Scholar
  17. 17.
    Kim C, Kim S, Lee J, Kim J, Yoon J (2015) Capacitive and oxidant generating properties of black-colored TiO2 nanotube array fabricated by electrochemical self-doping. ACS Appl Mater Interfaces 7(14):7486–7491CrossRefGoogle Scholar
  18. 18.
    Singh AP, Kodan N, Mehta BR (2016) Enhancing the photoelectrochemical properties of titanium dioxide by thermal treatment in oxygen deficient environment. Appl Surf Sci 372:63–691CrossRefGoogle Scholar
  19. 19.
    Zhang A, Gong F, Xiao Y, Guo X, Li F, Wang L, Zhang Y, Zhang L (2017) Electrochemical reductive doping and interfacial impedance of TiO2 nanotube arrays in aqueous and aprotic solvents. J Electrochem Soc 164(2):H91–H96CrossRefGoogle Scholar
  20. 20.
    Meng M, Zhou S, Yang L, Gan Z, Liu K, Tian F, Zhu Y, Li C, Liu W, Yuan H, Zhang Y (2018) Hydrogenated TiO2 nanotube photonic crystals for enhanced photoelectrochemical water splitting. Nanotechnology 29(15):155401–155416CrossRefGoogle Scholar
  21. 21.
    Xiong Y, Yang L, Xiao P, Yang Y (2018) Enhanced charge separation and oxidation kinetics by loading Pt nanoparticles with hydrogenated TiO2 nanotubes. J Mater Sci 53(10):7703–7714CrossRefGoogle Scholar
  22. 22.
    Islam SZ, Reed A, Nagpure S, Wanninayake N, Browing JF, Strzalka J, Kim DY, Rankin SE (2018) Hydrogen incorporation by plasma treatment gives mesoporous black TiO2 thin films with visible photoelectrochemical water oxidation activity. Microporous Mesoporous Mater 29:261–295Google Scholar
  23. 23.
    Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018):746–750CrossRefGoogle Scholar
  24. 24.
    Zhang X, Hu W, Zhang K, Wang J, Sun B, Li H, Qiao P, Wang L, Zhou W (2017) Ti3+ self-doped black TiO2 nanotubes with mesoporous nanosheet architecture as efficient solar-driven hydrogen evolution photocatalysts. ACS Sustain Chem Eng 5(8):6894–6901CrossRefGoogle Scholar
  25. 25.
    Sun D, Zhang Y, Yan S, Sun K, Wang G, Bu Y, Xie G (2018) Fabrication of excellent heterojunction assisting by interfaced oxygen vacancy to improve the separation capacity of photogenerated carriers. Adv Mater Interfaces 5:1325–1342Google Scholar
  26. 26.
    Zhao S, Chen Y, Zhao Z, Jiang L, Zhang C, Kong J, Zhu X (2018) Enhanced capacitance of TiO2 nanotubes topped with nanograss by H3PO4 soaking and hydrogenation doping. Electrochim Acta 266:233–241CrossRefGoogle Scholar
  27. 27.
    Sierra-Uribe H, Carrera-Crespo JE, Cano A, Cordoba-Tuta EM, Gonzalez I, Acevedo-Pena P (2018) Electroreduction as a viable strategy to obtain TiO2 nanotube films with preferred anatase crystal orientation and its impact on photoelectrochemical performance. J Solid State Electrochem 22(6):1881–1891CrossRefGoogle Scholar
  28. 28.
    FabregatSantiago F, Barea EM, Bisquert J, Mor GK, Shankar K, Grimes CA (2008) High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping. J Am Chem Soc 130(34):11312–11316CrossRefGoogle Scholar
  29. 29.
    Berger T, Lana-Villarreal T, Monllor-Satoca D, Roberto G (2006) Charge transfer reductive doping of nanostructured TiO2 thin films as a way to improve their photoelectrocatalytic performance. Electrochem Commun 8(11):1713–1718CrossRefGoogle Scholar
  30. 30.
    Xu GQ, Liu HP, Wang JW, Lv J, Zheng ZX, Wu YC (2014) Photoelectrochemical performances and potential applications of TiO2 nanotube arrays modified with ag and Pt nanoparticles. Electrochim Acta 121:194–202CrossRefGoogle Scholar
  31. 31.
    Pang YJ, Xu GQ, Feng Q, Lv J, Qin YQ, Zhang Y, Zheng ZX, Wu YC (2018) Crystalline orientation preference for TiO2 nanotube arrays with efficient photoelectrochemical properties. Phys Lett A 382(38):2759–2762CrossRefGoogle Scholar
  32. 32.
    Pan D, Huang H, Wang X, Wang L, Liao H, Li Z, Wu M (2014) C-axis preferentially oriented and fully activated TiO2 nanotube arrays for lithium ion batteries and supercapacitors. J Mater Chem A 2(29):11454–11464CrossRefGoogle Scholar
  33. 33.
    Lee S, Park IJ, Kim DH, Seong WM, Kim DW, Han GS, Kim JY, Jung HS, Hong KS (2012) Energy Environ Sci 5(7):7989–7995CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHefei University of TechnologyHefeiChina
  2. 2.Key Laboratory of Advanced Functional Materials and Devices of Anhui ProvinceHefei University of TechnologyHefeiChina
  3. 3.School of Instrument Science and Optoelectronics EngineeringHefei University of TechnologyHefeiChina
  4. 4.BGRIMM Magnetic Materials and Technology Co., LtdBeijingChina

Personalised recommendations