Journal of Solid State Electrochemistry

, Volume 23, Issue 9, pp 2619–2626 | Cite as

Ionic conductivity, phase composition, and local defect structure of ZrO2-Gd2O3system solid solution crystals

  • Ekaterina A. Agarkova
  • Mikhail A. Borik
  • Tatiana V. Volkova
  • Alexey V. Kulebyakin
  • Irina E. Kuritsyna
  • Elena E. Lomonova
  • Filipp O. MilovichEmail author
  • Valentina A. Myzina
  • Polina A. Ryabochkina
  • Nataliya Yu. Tabachkova
Original Paper


The crystalline structure, ionic conductivity, and local structure of ZrO2-Gd2O3solid solution crystals have been studied for a wide range of compositions. The (ZrO2)1-х(Gd2O3)хcrystals (x = 0.03–0.33) have been grown by directional melt crystallization in cold crucible. The phase composition of the crystals has been studied using X-ray diffraction and transmission electron microscopy. The transport parameters have been studied using impedance spectroscopy in the 400–900 °С range. The local structure of the crystals has been studied by optical spectroscopy with Eu3+ ion probe. The maximum conductivity at 900 °С (0.047 S/cm) has been observed in the crystals containing 10 mol% Gd2O3. This composition is close to the cubic/tetragonal phase boundary. The compositions corresponding to the single-phase cubic region exhibit a decrease in the ionic conductivities with an increase in the Gd2O3 concentration. Studies of the local structure of the ZrO2-Gd2O3 system solid solutions have revealed specific features of the formation of optical centers which characterize the localization of oxygen vacancies in the lattice depending on the concentration of the stabilizing oxide. Comparison of the experimental values of the lattice parameter with those calculated using various models has shown that the best fit between these data is provided by the model of inequiprobable distribution of oxygen vacancies. We have discussed the correlation between the crystalline and local structures and the transport parameters of the crystals. Analysis of the results allows us to identify the Gd2O3 concentration ranges in which the ionic conductivity of the crystals is mainly determined either by the phase composition or by the regularity of oxygen vacancy localization in the crystal lattice.


Single crystals Solid oxide fuel cell Solid solutions Ionic conducting materials ZrO2-Gd2O3 


Funding information

The work was carried out with financial support in part from the Russian Science Foundation (RSF grant no. 18-79-00323).


  1. 1.
    Badwal SPS, Bannister MJ, Hannink RHJ (1993) Science and technology of zirconia V. Technomic. Lancaster, BaselGoogle Scholar
  2. 2.
    Basu RN (2006) In: Basu S (ed) Materials for Solid Oxide Fuel Cells, chapter. Springer, New Delhi, p 12Google Scholar
  3. 3.
    Yamamoto O, Arachi Y, Sakai H, Takeda Y, Imanishi N, Mizutani Y, Kawai M, Nakamura Y (1998) Zirconia based oxide ion conductors for solid oxide fuel cells. Ionics 4:403–408CrossRefGoogle Scholar
  4. 4.
    Arachi Y, Sakai H, Yamamoto O, Takeda Y, Imanishai N (1999) Electrical conductivity of the ZrO2 –Ln2O3 (Ln - lanthanides) system. Solid State Ionics 121:133–139CrossRefGoogle Scholar
  5. 5.
    Kilner JA, Brook RJ (1982) A study of oxygen ion conductivity in doped non-stoichiometric oxides. Solid State Ionics 6:237–252CrossRefGoogle Scholar
  6. 6.
    Kilner JA, Waters CD (1982) The effects of dopant cation-oxygen vacancy complexes on the anion transport properties of non-stoichiometric fluorite oxides. Solid State Ionics 6:253–259CrossRefGoogle Scholar
  7. 7.
    Goff JP, Hayes W, Hull S, Hutchings MT, Clausen KN (1999) Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures. Phys Rev B 59(22)Google Scholar
  8. 8.
    Yugami H, Koike A, Ishigame M, Suemoto T (1991) Relationship between local structures and ionic conductivity in ZrO2-Y2O3 studied by site-selective spectroscopy. Phys Rev B 44:9214–9222CrossRefGoogle Scholar
  9. 9.
    Catlow CRA (1984) Transport in doped fluorite oxides. Solid State Ionics 12:67–73CrossRefGoogle Scholar
  10. 10.
    Zavodinsky VG (2004) The mechanism of ionic conductivity in stabilized cubic zirconia. Phys Solid State 46:441–445CrossRefGoogle Scholar
  11. 11.
    Tokiy NV, Perekrestov BI, Savina DL, Danilenko IA (2011) Concentration and temperature dependences of the oxygen migration energy in yttrium-stabilized zirconia. Phys Solid State 53:1732–1736CrossRefGoogle Scholar
  12. 12.
    Ding H, Virkar AV, Liu F (2012) Defect configuration and phase stability of cubic versus tetragonal yttria-stabilized zirconia. Solid State Ionics 215:16–23CrossRefGoogle Scholar
  13. 13.
    Li X, Hafskjold B (1995) Molecular dynamics simulations of yttrium-stabilized zirconia. J Phys Condens Matter 7:1255–1271CrossRefGoogle Scholar
  14. 14.
    Eichler A (2001) Tetragonal Y-doped zirconia: structure and ion conductivity. Phys Rev B 64:174103–1-174103-8CrossRefGoogle Scholar
  15. 15.
    Dexpert-Ghys J, Faucher M, Caro P (1984) Site selective spectroscopy and structural analysis of yttria-doped zirconias. J Solid State Chem 54:179–192CrossRefGoogle Scholar
  16. 16.
    Voronko YK, Zufarov MA, Sobol AA, Ushakov SN, Tsymbal LI (1997) Spectroscopy and the structure of Eu3+ activator centers in partially stabilized zirconium and hafnium dioxide. Inorg Mater 33:452–464Google Scholar
  17. 17.
    Borik MA, Volkova TV, Kuritsyna IE, Lomonova EE, Myzina VA, Ryabochkina PA, Tabachkova NY (2019) Features of the local structure and transport properties of ZrO2-Y2O3-Eu2O3 solid solutions. J Alloys Compd 770:320–326CrossRefGoogle Scholar
  18. 18.
    Dutta S, Bhattacharya S, Agrawal DC (2003) Electrical properties of ZrO2–Gd2O3ceramics. Mater Sci Eng B 100:191–198CrossRefGoogle Scholar
  19. 19.
    Kang TK, Nagasaki T, Igawa N, II-Hiunn K, Ohno H (1992) Electrical properties of cubic, stabalized, single ZrO2-Gd2O3 crystals. J Am Ceram Soc 75:2297–2299CrossRefGoogle Scholar
  20. 20.
    Borik MA, Lomonova EE, Osiko VV, Panov VA, Porodinkov OE, Vishnyakova MA, Voron’ko YK, Voronov VV (2005) Partially stabilized zirconia single crystals: growth from the melt and investigation of the properties. J Cryst Growth 275:2173–2179CrossRefGoogle Scholar
  21. 21.
    Yashima M, Sasaki S, Kakihana M, Yamaguchi Y, Arashi H, Yoshimura M (1994) Oxygen-induced structural-change of the tetragonal phase around the tetragonal-cubic phase-boundary in ZrO2-YO1.5 solid-solutions. Acta Crystallogr B 50:663–672CrossRefGoogle Scholar
  22. 22.
    Borik MA, Volkova TV, Lomonova EE, Myzina VA, Ryabochkina PA, Tabachkova NY, Chabushkin AN, Kyashkin VM, Khrushchalina SA (2018) Spectroscopy of optical centers of Eu3+ ions in ZrO2-Gd2O3-Eu2O3 crystals. J Lumin 200:66–73CrossRefGoogle Scholar
  23. 23.
    Voronko YK, Gorbachev AV, Sobol AA (1995) Raman scattering and the structure of cubic solid solutions based on zirconium and hafnium dioxide. Fiz Tverd Tela 37: 1939–1952. Sov Phys Solid State 37:1055–1069Google Scholar
  24. 24.
    Osiko VV (1965) Thermodynamics of optical centers in CaF2-TR3+ crystals. Fiz. Tverd. Tela 7: 1294–1302. Sov Phys Solid State 7:1047–1055Google Scholar
  25. 25.
    Aleksandrov VI, Valyano GE, Lukin BV, Osiko VV, Rautbort AE, Tatarintsev VM, Filatova VN (1976) The structure of single crystals of stabilized zirconium dioxide. Neorg Mater 12:273–277Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ekaterina A. Agarkova
    • 1
  • Mikhail A. Borik
    • 2
  • Tatiana V. Volkova
    • 3
  • Alexey V. Kulebyakin
    • 2
  • Irina E. Kuritsyna
    • 1
  • Elena E. Lomonova
    • 2
  • Filipp O. Milovich
    • 4
    Email author
  • Valentina A. Myzina
    • 2
  • Polina A. Ryabochkina
    • 3
  • Nataliya Yu. Tabachkova
    • 2
    • 4
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesMoscow DistrictRussia
  2. 2.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Ogarev Mordovia State UniversitySaranskRussia
  4. 4.National University of Science and Technology (MISIS)MoscowRussia

Personalised recommendations