Nitrogen-doped graphene derived from polyaniline/graphene oxide composites with improved capacity and cyclic performance of Li-O2 battery

  • Fujie Li
  • Min Zhu
  • Zhihong LuoEmail author
  • Lulu Guo
  • Zhicheng Bian
  • Yibing Li
  • Kun LuoEmail author
Original Paper


Nitrogen-doped graphene (NGO) was synthesized by the pyrolysis of precursor polyaniline/graphene oxide composites, where the nitrogen content of the NGO was dependent on the loading amount of polyaniline. The Li-O2 cell with the NGO cathode exhibits a higher full-discharge capacity and longer cycle life than the one with the graphene oxide cathode. SEM and Raman analyses indicate that film-like Li2O2 product is formed on the NGO cathode in battery discharging following a surface-pathway mode, due to the adsorption of soluble intermediates by the nitrogen-containing species of the NGO cathode according to rotating ring disk electrode analysis, which effectively lowers the charge potential of Li-O2 cells and alleviates the corrosion of Li anode. The simple synthesis of NGO with good catalytic performance and electric conductance is prospective to be applied on Li-O2 batteries at low cost.


Nitrogen doping Graphene Lithium oxygen battery Capacity Cyclic performance 


Funding information

This work was supported by the National Natural Science Foundation of China (Grant No. 51874051) and the Guangxi Natural Science Foundation (No. 2016GXNSFAA380107 and 2018GXNSFAA281184).

Supplementary material

10008_2019_4339_MOESM1_ESM.docx (1.4 mb)
ESM 1 (DOCX 1397 kb)


  1. 1.
    Luntz AC, McCloskey BD (2014) Nonaqueous Li-air batteries: a status report. Chem Rev 114(23):11721–11750CrossRefGoogle Scholar
  2. 2.
    Xu JJ, Liu QC, Yu Y, Wang J, Yan JM, Zhang XB (2017) In situ construction of stable tissue-directed/reinforced bifunctional separator/protection film on lithium anode for lithium-oxygen batteries. Adv Mater 29(24):1606552CrossRefGoogle Scholar
  3. 3.
    Luo K, Zhu GB, Zhao YZ, Luo ZH, Liu XT, Zhang K, Li YL, Scott K (2018) Enhanced cycling stability of Li-O2 batteries by using a polyurethane/SiO2/glass fiber nanocomposite separator. J Mater Chem A 6(17):7770–7776CrossRefGoogle Scholar
  4. 4.
    Kim JH, Woo H, Kim WK, Ryu KH, Kim D (2016) Improved cycling performance of lithium-oxygen cells by use of a lithium electrode protected with conductive polymer and aluminum fluoride. ACS Appl Mater Interfaces 8(47):32300–32306CrossRefGoogle Scholar
  5. 5.
    Mozhzhukhina N, Leo LPMD, Calvo EJ (2013) Infrared spectroscopy studies on stability of dimethyl sulfoxide for application in a Li-air battery. J Phys Chem C 117(36):18375–18380CrossRefGoogle Scholar
  6. 6.
    Ryan KR, Trahey L, Ingram BJ, Burrell AK (2012) Limited stability of ether-based solvents in lithium-oxygen batteries. J Phys Chem C 116(37):19724–19728CrossRefGoogle Scholar
  7. 7.
    Zhang XM, Guo LM, Gan LF, Zhang YT, Wang J, Johnson LR, Bruce PG, Peng ZQ (2017) LiO2: cryosynthesis and chemical/electrochemical reactivities. J Phys Chem Lett 8(10):2334–2338CrossRefGoogle Scholar
  8. 8.
    Luo ZH, Zhu GB, Guo LL, Li FJ, Li YB, Fu M, Cao YC, Li YL, Luo K (2019) Improving the cyclability and capacity of Li-O2 batteries via low rate pre-activation. Chem Commun 55(14):2094–2097CrossRefGoogle Scholar
  9. 9.
    Liu B, Xu W, Yan PF, Kim ST, Engelhard MH, Sun XL, Mei DH, Cho J, Wang CM, Zhang JG (2017) Stabilization of Li metal anode in DMSO-based electrolytes via optimization of salt-solvent coordination for Li-O2 batteries. Adv Energy Mater 7(14):1602605CrossRefGoogle Scholar
  10. 10.
    Ma SH, Zhang YL, Cui QH, Zhao J, Peng ZQ (2016) Understanding oxygen reactions in aprotic Li-O2 batteries. Chin Phys B 25:58–67Google Scholar
  11. 11.
    Zhang YL, Cui QH, Zhang XM, McKee WC, Xu Y, Ling SG, Li H, Zhong GM, Yang Y, Peng ZQ (2016) Amorphous Li2O2:chemical synthesis and electrochemical properties. Angew Chem Int Ed 55(36):10717–10721CrossRefGoogle Scholar
  12. 12.
    Yang Y, Liu W, Wang YM, Wang XC, Xiao L, Lu JT, Zhuang L (2014) A PtRu catalyzed rechargeable oxygen electrode for Li-O2 batteries: performance improvement through Li2O2 morphology control. Phys Chem Chem Phys 16(38):20618–20623CrossRefGoogle Scholar
  13. 13.
    Zhou Y, Lyu ZY, Wang LJ, Dong WH, Dai WR, Cui XH, Hao ZK, Laia M, Chen W (2017) Co3O4 functionalized porous carbon nanotube oxygen cathode to promote Li2O2 surface growth for improved cycling stability in Li-O2 batteries. J Mater Chem A 5(48):25501–25508CrossRefGoogle Scholar
  14. 14.
    Mi R, Liu H, Wang H, Wong KW, Mei J, Chen YG, Lau WM, Yan H (2014) Effects of nitrogen-doped carbon nanotubes on the discharge performance of Li-air batteries. Carbon 67:744–752CrossRefGoogle Scholar
  15. 15.
    Johnson L, Li CM, Liu ZH, Chen YH, Freunberger SA, Tarascon JM, Ashok PC, Praveen BB, Dholakia K, Bruce PG (2014) The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. Nat Chem 6(12):1091–1099CrossRefGoogle Scholar
  16. 16.
    Gallant BM, Kwabi DG, Mitchell RR, Zhou JG, Thompsonb CV, Yang SH (2013) Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li-O2 batteries. Energy Environ Sci 6(8):2518–2528CrossRefGoogle Scholar
  17. 17.
    Adams BD, Radtke C, Black R, Trudeau ML, Zaghib K, Nazar LF (2013) Current density dependence of peroxide formation in the Li-O2 battery and its effect on charge. Energy Environ Sci 6(6):1772–1778CrossRefGoogle Scholar
  18. 18.
    Zeng JQ, Amici J, Monteverde Videla AHA, Francia C, Bodoardo S (2017) Synthesis of mesoporous carbons and reduced graphene oxide and their influence on the cycling performance of rechargeable Li-O2 batteries. J Solid State Electrochem 21(2):503–514CrossRefGoogle Scholar
  19. 19.
    Yang JB, Li YL, Mi HW, Zhang PX, Deng LB, Sun LN, Ren XZ (2018) Enhanced electrocatalytic performance of Fe-TiO2 /N-doped graphene cathodes for rechargeable Li-O2 batteries. J Solid State Electrochem 22(3):909–917CrossRefGoogle Scholar
  20. 20.
    Zhao GY, Zhang L, Pan T, Sun KN (2013) Preparation of NiO/multiwalled carbon nanotube nanocomposite for use as the oxygen cathode catalyst in rechargeable Li-O2 batteries. J Solid State Electrochem 17(6):1759–1764CrossRefGoogle Scholar
  21. 21.
    Wang XF, Hou XD, Wang Q, Ge WY, Guo SW (2019) In situ fabrication of flaky-like NiMn-layered double hydroxides as efficient catalyst for Li-O2 battery. J Solid State Electrochem 23(4):1121–1128CrossRefGoogle Scholar
  22. 22.
    Wu G, Nathan HM, Gao W, Ma SG, Zhong RQ, Han JT, Jon KB, Piotr Z (2012) Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium O2 battery cathodes. ACS Nano 6(11):9764–9776CrossRefGoogle Scholar
  23. 23.
    Zhang Z, Bao J, He C, Chen YN, Wei JP, Zhou Z (2014) Hierarchical carbon–nitrogen architectures with both mesopores and macrochannels as excellent cathodes for rechargeable Li-O2 batteries. Adv Funct Mater 24(43):6826–6833CrossRefGoogle Scholar
  24. 24.
    Li YL, Wang JJ, Li XF, Geng DS, Banis MN, Li RY, Sun XL (2012) Nitrogen-doped graphene nanosheets as cathode materials with excellent electrocatalytic activity for high capacity lithium-oxygen batteries. Electrochem Commun 18:12–15CrossRefGoogle Scholar
  25. 25.
    Luo ZH, Zhu LH, Zhang HY, Tang HQ (2013) Polyaniline uniformly coated on graphene oxide sheets as supercapacitor material with improved capacitive properties. Mater Chem Phys 139(2-3):572–579CrossRefGoogle Scholar
  26. 26.
    Gavrilov N, Pašti IA, Vujković M, Travas-Sejdic J, Ć irić-Marjanović G, Mentus SV (2012) High-performance charge storage by N-containing nanostructured carbon derived from polyaniline. Carbon 50(10):3915–3927CrossRefGoogle Scholar
  27. 27.
    Yan J, Wei T, Qiao WM, Fan ZJ, Zhang LJ, Li TY, Zhao QK (2010) A high-performance carbon derived from polyaniline for supercapacitors. Electrochem Commun 12(10):1279–1282CrossRefGoogle Scholar
  28. 28.
    Zhao CH, Yu C, Liu SH, Yang J, Fan XM, Huang HW, Qiu J (2015) 3D porous N-doped graphene frameworks made of interconnected nanocages for ultrahigh-rate and long-life Li-O2 batteries. Adv Funct Mater 25(44):6913–6920CrossRefGoogle Scholar
  29. 29.
    Shu CZ, Lin YM, Su DS (2016) N-doped onion-like carbon as an efficient oxygen electrode for long-life Li-O2 battery. J Mater Chem A 4(6):2128–2136CrossRefGoogle Scholar
  30. 30.
    Wu G, Mack NH, Gao W, Ma SG, Zhong RQ, Han JT, Baldwin JK, Zelenay P (2012) Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O2 battery cathodes. ACS Nano 6(11):9764–9776CrossRefGoogle Scholar
  31. 31.
    Rinaldi A, Wijaya O, Hoster HE, Yu DY (2014) History effects in lithium-oxygen batteries: how initial seeding influences the discharge capacity. ChemSusChem 7(5):1283–1288CrossRefGoogle Scholar
  32. 32.
    Shui JL, Lin Y, John WC, Xu JT, Fan XL, Dai LM (2016) Nitrogen-doped holey graphene for high performance rechargeable Li-O2 batteries. ACS Energy Lett 1(1):260–265CrossRefGoogle Scholar
  33. 33.
    Wang JW, Zhang YL, Guo LM, Wang EK, Peng ZQ (2016) Identifying reactive sites and transport limitations of oxygen reactions in aprotic lithium-O2 batteries at the stage of sudden death. Angew Chem Int Ed 55(17):5201–5205CrossRefGoogle Scholar
  34. 34.
    Sun F, Gao R, Zhou D, Osenberg M, Dong K, Kardjilov N, Hilger A, Markötter H, Bieker PM, Liu X, Manke I (2019) Revealing hidden facts of Li anode in cycled lithium-oxygen batteries through X-ray and neutron tomography. ACS Energy Lett 4(1):306–316CrossRefGoogle Scholar
  35. 35.
    Gao XW, Chen YH, Johnson L, Bruce PG (2016) Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions. Nat Mater 15(8):882–888CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringGuilin University of TechnologyGuilinPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringChangzhou UniversityChangzhouPeople’s Republic of China

Personalised recommendations