Raman spectroelectrochemical study of electrode reactions of hydroquinone at electrodes modified with Nile blue and other azine type redox mediators

  • Regina Mažeikienė
  • Gediminas Niaura
  • Albertas MalinauskasEmail author
Original Paper


Electrooxidation of hydroquinone (HQ) to benzoquinone (BQ) has been studied by Raman spectroelectrochemistry at a gold electrode modified with adsorbed or electropolymerized layer of the redox dye Nile blue. Raman spectra were excited with 785 nm laser line. Reversible electrochemical oxidation of HQ proceeded at a midpoint potential of 0.43–0.45 V vs. Ag/AgCl in pH 1.0 solution. The formation of a reaction product BQ has been observed at a controlled electrode potential of 0.6 V by Raman scattering from the modified electrode. The formation of BQ appears to occur faster at a higher concentration of HQ. By comparing the data with our previous studies done with electrodes modified by the variety of azine class redox dyes Meldola blue, Neutral red, and Toluidine blue, it was concluded that the formation of a reaction product BQ could be observed by Raman spectroelectrochemistry only in absence of resonance Raman enhancement of surface attached dye, viz. at a sufficient long distance on the wavelength scale between the dye optical absorbance and laser line used for spectra excitation.


Raman spectroscopy Spectroelectrochemistry Redox mediators Azine 



  1. 1.
    Kang G, Yang MW, Mattei MS, Schatz GC, Van Duyne RP (2019) In situ nanoscale redox mapping using tip-enhanced Raman spectroscopy. Nano Lett 19(3):2106–2113CrossRefGoogle Scholar
  2. 2.
    Chen X, Goubert G, Jiang S, Van Duyne RP (2018) Electrochemical STM tip-enhanced Raman spectroscopy study of electron transfer reactions of covalently tethered chromophores on Au(111). J Phys Chem C 122(21):11586–11590CrossRefGoogle Scholar
  3. 3.
    Mattei M, Kang G, Goubert G, Chulha DV, Schatz GC, Jensen L, Van Duyne RP (2017) Tip-enhanced Raman voltammetry: coverage dependence and quantitative modeling. Nano Lett 17(1):590–596CrossRefGoogle Scholar
  4. 4.
    Wilson AJ, Molina NY, Willets KA (2016) Modification of the electrochemical properties of Nile blue through covalent attachment to gold as revealed by electrochemistry and SERS. J Phys Chem C 120(37):21091–21098CrossRefGoogle Scholar
  5. 5.
    Wilson AJ, Willets KA (2016) Unforeseen distance-dependent SERS spectroelectrochemistry from surface-tethered Nile blue: the role of molecular orientation. Analyst 141(17):5144–5151CrossRefGoogle Scholar
  6. 6.
    Wang C, Wong KW, Wang Q, Zhou YF, Tang CY, Fan MK, Mei J, Lau WM (2019) Silver nanoparticles loaded chitosan foam as a flexible SERS substrate for active collecting analytes from both solid surface and solution. Talanta 191:241–247CrossRefGoogle Scholar
  7. 7.
    Xu FG, Lai HS, Xu H (2018) Gold nanocone arrays directly grown on nickel foam for improved SERS detection of aromatic dyes. Anal Methods 10(26):3170–3177CrossRefGoogle Scholar
  8. 8.
    Rekha CR, Nayar VU, Gopchandran KG (2018) Synthesis of highly stable silver nanorods and their application as SERS substrates. J Sci Adv Mater Devices 3(2):196–205CrossRefGoogle Scholar
  9. 9.
    Liu C, Su QQ, Li L, Sun J, Dong J, Qian WP (2018) Substrate-immersed solvothermal synthesis of ordered SiO2/Ag arrays as catalytic SERS substrates. Nano 13:1850049CrossRefGoogle Scholar
  10. 10.
    Camacho SA, Sobral RG, Aoki PHB, Constantino CJL, Brolo AG (2018) Zika immunoassay based on surface-enhanced Raman scattering nanoprobes. ACS Sensors 3(3):587–594CrossRefGoogle Scholar
  11. 11.
    Mažeikienė R, Niaura G, Eicher-Lorka O, Malinauskas A (2008) Raman spectroelectrochemical study of Toluidine Blue, adsorbed and electropolymerized at a gold electrode. Vibrat Spectrosc 47(2):105–112CrossRefGoogle Scholar
  12. 12.
    Mažeikienė R, Niaura G, Eicher-Lorka O, Malinauskas A (2011) Raman spectroelectrochemical study of Meldola blue, adsorbed and electropolymerized at a gold electrode. J Colloid Interface Sci 357(1):189–197CrossRefGoogle Scholar
  13. 13.
    Mažeikienė R, Niaura G, Malinauskas A (2009) Raman spectroelectrochemical study of electrochemical decomposition of poly(neutral red) at a gold electrode. J Colloid Interface Sci 336(1):195–199CrossRefGoogle Scholar
  14. 14.
    Mažeikienė R, Niaura G, Malinauskas A (2013) Electrochemical surface-enhanced Raman spectroscopic study of redox processes of solution species at electrode modified with the redox dye Meldola blue. J Electroanal Chem 700:40–46CrossRefGoogle Scholar
  15. 15.
    Mažeikienė R, Balskus K, Eicher-Lorka O, Niaura G, Meškys R, Malinauskas A (2009) Raman spectroelectrochemical study of electrode processes at Neutral red- and poly(Neutral red) modified electrodes. Vibrat Spectrosc 51(2):238–247CrossRefGoogle Scholar
  16. 16.
    Mažeikienė R, Niaura G, Malinauskas A (2008) In situ Raman spectroelectrochemical study of redox processes at poly(Toluidine blue) modified electrode. Electrochim Acta 53(26):7736–7743CrossRefGoogle Scholar
  17. 17.
    Niaura G, Gaigalas AK, Vilker VL (1997) Moving spectroelectrochemical cell for surface Raman spectroscopy. J Raman Spectrosc 28(12):1009–1011CrossRefGoogle Scholar
  18. 18.
    Mažeikienė R, Niaura G, Eicher-Lorka O, Malinauskas A (2019) Raman spectroelectrochemical study of redox dye Nile blue adsorbed or electropolymerized at a gold electrode. Chemija 30:78–88Google Scholar
  19. 19.
    Zhan CG, Iwata S (1998) Ab initio MO and density functional studies on the vibrational spectra of 1,4-benzoquinone, and its anion and dianion. Chem Phys 230(1):45–56CrossRefGoogle Scholar
  20. 20.
    Zhao X, Imahori H, Zhan CG, Mizutani Y, Sakata Y, Kitagawa T (1996) Ultraviolet resonance Raman spectra and ab initio vibrational analyses of 1,4-benzoquinone: reassignments of the ν2 and ν3 bands. Chem Phys Lett 262(5):643–648CrossRefGoogle Scholar
  21. 21.
    Becker ED (1991) Raman spectra of isotopic derivatives of p-benzoquinone: revised vibrational assignments. J Phys Chem 95(7):2818–2823CrossRefGoogle Scholar
  22. 22.
    Jose J, Burgess K (2006) Benzophenoxazine-based fluorescent dyes for labeling biomolecules. Tetrahedron 62(48):11021–11037CrossRefGoogle Scholar
  23. 23.
    Krihak M, Murtagh MT, Shahriari MR (1997) A spectroscopic study of the effects of various solvents and sol-gel hosts on the chemical and photochemical properties of thionin and nile blue A. J Sol-Gel Sci Technol 10:153–163CrossRefGoogle Scholar
  24. 24.
    D‘Ilario L, Martinelli A (2006) Toluidine blue: aggregation properties and structural aspects. Model Simul Mater Sci Eng 14:581–595CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Regina Mažeikienė
    • 1
  • Gediminas Niaura
    • 1
  • Albertas Malinauskas
    • 1
    Email author
  1. 1.Department of Organic Chemistry, Center for Physical Sciences and TechnologyVilniusLithuania

Personalised recommendations