Advertisement

Study on boron and nitrogen co-doped graphene xerogel for high-performance electrosorption application

  • Shuangshuang Wang
  • Jianwei Feng
  • Qinghan MengEmail author
  • Bing Cao
  • Guiying TianEmail author
Original Paper
  • 35 Downloads

Abstract

The search for highly efficient carbon materials with high desalting capacity for the brackish water desalination is still indispensable. In this study, boron and nitrogen co-doped graphene xerogels are prepared by a simple sol-gel method with atmospheric drying and carbonization, in which the rod-like primary particles are attached on the graphene sheets via crosslinking reaction of boric acid-melamine-resorcinol-formaldehyde (BMRF). With the increase in doping ratio, the carbonized BMRF gels display high micropore surface area and abundant doping sites. The maximum doping contents of boron (1.54 at.%) and nitrogen (8.72 at.%) can be achieved in the co-doped graphene xerogel with the molar ratios of C6H6O2 and H3BO3 of 1.2, which displays superior specific capacitance (242 F g−1 at a current density of 0.1 A g−1) and high capacitance retention (92.7% after 5000 cycles at a current density of 2.0 A g−1). The co-doped graphene xerogels are evaluated as electrode materials for the electrochemical desalination of brackish water. Compared to the bare graphene xerogel, the co-doped graphene xerogel displays high electrosorption capacity of 18.45 mg g−1 and high charge efficiency of 45% for NaCl solution under an applied voltage of 1.6 V.

Keywords

Co-doping Graphene xerogel Capacitive deionization Desalting capacity 

Notes

Acknowledgments

Authors also greatly thank for grammatical correction performed by Ms. Charlotte Alina Fritsch (IAM-ESS, KIT).

Funding information

It is a pleasure to acknowledge the generous financial support of this research by the National Natural Science Foundation of China (51372011) and the China Scholarship Council (201506880029).

References

  1. 1.
    Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23(42):4828–4850CrossRefGoogle Scholar
  2. 2.
    Choi JH (2010) Fabrication of a carbon electrode using activated carbon powder and application to the capacitive deionization process. Sep Purif Technol 70(3):362–366CrossRefGoogle Scholar
  3. 3.
    Leonard KC, Genthe JR, Sanfilippo JL, Zeltner WA, Anderson MA (2009) Synthesis and characterization of asymmetric electrochemical capacitive deionization materials using nanoporous silicon dioxide and magnesium doped aluminum oxide. Electrochim Acta 54(22):5286–5291CrossRefGoogle Scholar
  4. 4.
    Zou L, Li L, Song H, Morris G (2008) Using mesoporous carbon electrodes for brackish water desalination. Water Res 42(8-9):2340–2348CrossRefGoogle Scholar
  5. 5.
    Oren Y (2008) Capacitive deionization (CDI) for desalination and water treatment - past, present and future (a review). Desalination 228(1-3):10–29CrossRefGoogle Scholar
  6. 6.
    Zaid K, Suriani AB (2017) A review on electrode materials used in capacitive deionization processes for water treatment applications. Forensic Sci Int 29:285–289Google Scholar
  7. 7.
    Tian G, Liu L, Meng Q, Cao B (2014) Preparation and characterization of cross-linked quaternised polyvinyl alcohol membrane/activated carbon composite electrode for membrane capacitive deionization. Desalination 354:107–115CrossRefGoogle Scholar
  8. 8.
    Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531CrossRefGoogle Scholar
  9. 9.
    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828CrossRefGoogle Scholar
  10. 10.
    Stoller M, Park S, Zhu Y et al (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502CrossRefGoogle Scholar
  11. 11.
    Shao Y, El-Kady MF, Wang LJ et al (2015) Graphene-based materials for flexible supercapacitors. Chem Soc Rev 44(11):3639–3665CrossRefGoogle Scholar
  12. 12.
    Worsley MA, Pauzauskie PJ, Olson TY, Biener J, Satcher JH Jr, Baumann TF (2010) Synthesis of graphene aerogel with high electrical conductivity. J Am Chem Soc 132(40):14067–14069CrossRefGoogle Scholar
  13. 13.
    Jung SM, Mafra DL, Lin C-T, Jung HY, Kong J (2015) Controlled porous structures of graphene aerogels and their effect on supercapacitor performance. Nanoscale 7(10):4386–4393CrossRefGoogle Scholar
  14. 14.
    Gu X, Yang Y, Hu Y, Hu M, Wang C (2015) Fabrication of graphene-based xerogels for removal of heavy metal ions and capacitive deionization. ACS Sustain Chem Eng 3(6):1056–1065CrossRefGoogle Scholar
  15. 15.
    Wang C, Huang Y, Pan H, Jiang J, Yang X, Xu Z, Tian H, Han S, Wu D (2016) Nitrogen-doped porous carbon/graphene aerogel with much enhanced capacitive behaviors. Electrochim Acta 215:100–107CrossRefGoogle Scholar
  16. 16.
    Shan H, Li X, Cui Y et al (2016) Sulfur/nitrogen dual-doped porous graphene aerogels enhancing anode performance of lithium ion batteries. Electrochim Acta 205:187–197CrossRefGoogle Scholar
  17. 17.
    Wu Z-S, Winter A, Chen L, Sun Y, Turchanin A, Feng X, Müllen K (2012) Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv Mater 24(37):5130–5135CrossRefGoogle Scholar
  18. 18.
    Rao CNR, Gopalakrishnan K, Govindaraj A (2014) Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements. Nano Today 9(3):324–343CrossRefGoogle Scholar
  19. 19.
    Paraknowitsch JP, Thomas A (2013) Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, Sulphur and phosphorus for energy applications. Energy Environ Sci 6(10):2839–2855CrossRefGoogle Scholar
  20. 20.
    Wei Y, Huo Y, Tian G, Meng Q, Cao B (2016) Nitrogen-doped functional graphene nanocomposites for capacitive deionization of NaCl aqueous solutions. J Solid State Electrochem 20(8):2351–2362CrossRefGoogle Scholar
  21. 21.
    Tian G, Liu L, Meng Q, Cao B (2015) Facile synthesis of laminated graphene for advanced supercapacitor electrode material via simultaneous reduction and N-doping. J Power Sources 274:851–861CrossRefGoogle Scholar
  22. 22.
    Liu L, Cui W, Meng Q, Tian G (2018) Nitrogen and sulfur co-doped carbon cryogel electrode for membrane capacitive deionization. Desalin Water Treat 132:134–143CrossRefGoogle Scholar
  23. 23.
    Sun L, Zhou H, Li L, Yao Y, Qu H, Zhang C, Liu S, Zhou Y (2017) Double soft-template synthesis of nitrogen/sulfur-codoped hierarchically porous carbon materials derived from protic ionic liquid for supercapacitor. ACS Appl Mater Interfaces 9(31):26088–26095CrossRefGoogle Scholar
  24. 24.
    Liu Y, Cheng H-M, Tang N et al (2016) Elemental superdoping of graphene and carbon nanotubes. Nat Commun 7:1–9Google Scholar
  25. 25.
    Li Y, Xu X, Hou S, Ma J, Lu T, Wang J, Yao Y, Pan L (2018) Facile dual doping strategy via carbonization of covalent organic frameworks to prepare membrane capacitive deionization. Chem Commun 54(99):14009–14012CrossRefGoogle Scholar
  26. 26.
    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814CrossRefGoogle Scholar
  27. 27.
    Younos T, Tulou KE (2005) Overview of desalination techniques. J Contemp Water Res Educ 132:3–10CrossRefGoogle Scholar
  28. 28.
    Qu D, Shi H (1998) Studies of activated carbons used in double-layer capacitors. J Power Sources 74(1):99–107CrossRefGoogle Scholar
  29. 29.
    Chen J, Yao B, Li C, Shi G (2013) An improved hummers method for eco-friendly synthesis of graphene oxide. Carbon 64:225–229CrossRefGoogle Scholar
  30. 30.
    Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24(9):3221–3227CrossRefGoogle Scholar
  31. 31.
    Deng QF, Liu L, Lin XZ, du G, Liu Y, Yuan ZY (2012) Synthesis and CO2 capture properties of mesoporous carbon nitride materials. Chem Eng J 203:63–70CrossRefGoogle Scholar
  32. 32.
    Wang S, Bian C, Jia B, Wang Y, Jing X (2016) Structure and thermal pyrolysis mechanism of poly(resorcinol borate) with high char yield. Polym Degrad Stab 130:328–337CrossRefGoogle Scholar
  33. 33.
    Gao J, Xia L, Liu Y (2004) Structure of a boron-containing bisphenol-F formaldehyde resin and kinetics of its thermal degradation. Polym Degrad Stab 83(1):71–77CrossRefGoogle Scholar
  34. 34.
    Gao J, Liu Y, Wang F (2001) Structure and properties of boron-containing bisphenol-a formaldehyde resin. Eur Polym J 37(1):207–210CrossRefGoogle Scholar
  35. 35.
    Wang S, Jing X, Wang Y, Si J (2014) High char yield of aryl boron-containing phenolic resins: the effect of phenylboronic acid on the thermal stability and carbonization of phenolic resins. Polym Degrad Stab 99:1–11CrossRefGoogle Scholar
  36. 36.
    Xu T, Meng Q, Fan Q, Yang M, Zhi W, Cao B (2017) Electrophoretic deposition of binder-free MnO2/graphene films for Lithium-ion batteries. Chin J Chem 35(10):1575–1585CrossRefGoogle Scholar
  37. 37.
    Ling Z, Wang G, Zhang M, Fan X, Yu C, Yang J, Xiao N, Qiu J (2015) Boric acid-mediated B,N-codoped chitosan-derived porous carbons with a high surface area and greatly improved supercapacitor performance. Nanoscale 7(12):5120–5125CrossRefGoogle Scholar
  38. 38.
    Zhi J, Wang Y, Deng S, Hu A (2014) Study on the relation between pore size and supercapacitance in mesoporous carbon electrodes with silica-supported carbon nanomembranes. RSC Adv 4(76):40296–40300CrossRefGoogle Scholar
  39. 39.
    Cai W, Zhou J, Li G, Zhang K, Liu X, Wang C, Zhou H, Zhu Y, Qian Y (2016) B,N-co-doped graphene supported sulfur for superior stable Li-S half cell and Ge-S full battery. ACS Appl Mater Interfaces 8(41):27679–27687CrossRefGoogle Scholar
  40. 40.
    Chen Z, Hou L, Cao Y, Tang Y, Li Y (2018) Gram-scale production of B, N co-doped graphene-like carbon for high performance supercapacitor electrodes. Appl Surf Sci 435:937–944CrossRefGoogle Scholar
  41. 41.
    Chen H, Xiong Y, Yu T, Zhu P, Yan X, Wang Z, Guan S (2017) Boron and nitrogen co-doped porous carbon with a high concentration of boron and its superior capacitive behavior. Carbon 113:266–273CrossRefGoogle Scholar
  42. 42.
    Soares OSGP, Rocha RP, Gonçalves AG, Figueiredo JL, Órfão JJM, Pereira MFR (2015) Easy method to prepare N-doped carbon nanotubes by ball milling. Carbon 91:114–121CrossRefGoogle Scholar
  43. 43.
    Liu L, Wang Y, Meng Q, Cao B (2017) A novel hierarchical graphene/polyaniline hollow microsphere as electrode material for supercapacitor applications. J Mater Sci 52(13):7969–7983CrossRefGoogle Scholar
  44. 44.
    Choi BG, Hong J, Hong WH, Hammond PT, Park HS (2011) Facilitated ion transport in all-solid-state flexible supercapacitors. ACS Nano 5(9):7205–7213CrossRefGoogle Scholar
  45. 45.
    Kong W, Wang G, Zhang M, Duan X, Hu J, Duan X (2019) Villiform carbon fiber paper as current collector for capacitive deionization devices with high areal electrosorption capacity. Desalination 459:1–9CrossRefGoogle Scholar
  46. 46.
    Chen Z, Zhang H, Wu C, Luo L, Wang C, Huang S, Xu H (2018) A study of the effect of carbon characteristics on capacitive deionization (CDI) performance. Desalination 433:68–74CrossRefGoogle Scholar
  47. 47.
    Baroud TN, Giannelis EP (2019) Role of mesopore structure of hierarchical porous carbons on the electrosorption performance of capacitive deionization electrodes. ACS Sustain Chem Eng 7(8):7580–7596CrossRefGoogle Scholar
  48. 48.
    Liu N-L, Sun S-H, Hou C-H (2019) Studying the electrosorption performance of activated carbon electrodes in batch-mode and single-pass capacitive deionization. Sep Purif Technol 215:403–409CrossRefGoogle Scholar
  49. 49.
    Gao T, Li H, Zhou F, Gao M, Liang S, Luo M (2019) Mesoporous carbon derived from ZIF-8 for high efficient electrosorption. Desalination 451:133–138CrossRefGoogle Scholar
  50. 50.
    Sun N, Li Z, Zhang X, Qin W, Zhao C, Zhang H, Ng DHL, Kang S, Zhao H, Wang G (2019) Hierarchical porous carbon materials derived from kelp for superior capacitive applications. ACS Sustain Chem Eng 7(9):8735–8743CrossRefGoogle Scholar
  51. 51.
    Aldalbahi A, Rahaman M, Almoiqli M, Hamedelniel A, Alrehaili A (2018) Single-walled carbon nanotube (SWCNT) loaded porous reticulated vitreous carbon (RVC) electrodes used in a capacitive deionization (CDI) cell for effective desalination. Nanomaterials 8(7):527–547CrossRefGoogle Scholar
  52. 52.
    Xue Y, Xie J, He M, Liu M, Xu M, Ni W, Yan YM (2018) Porous and high-strength graphitic carbon/SiC three-dimensional electrode for capacitive deionization and fuel cell applications. J Mater Chem A 6(39):19210–19220CrossRefGoogle Scholar
  53. 53.
    Li Y, Liu Y, Wang M, Xu X, Lu T, Sun CQ, Pan L (2018) Phosphorus-doped 3D carbon nanofiber aerogels derived from bacterial-cellulose for highly-efficient capacitive deionization. Carbon 130:377–383CrossRefGoogle Scholar
  54. 54.
    Tian S, Zhang Z, Zhang X, Ostrikov K (2019) Capacitative deionization using commercial activated carbon fiber decorated with polyaniline. J Colloid Interface Sci 537:247–255CrossRefGoogle Scholar
  55. 55.
    Shen J, Li Y, Wang C, Luo R, Li J, Sun X, Shen J, Han W, Wang L (2018) Hollow ZIFs-derived nanoporous carbon for efficient capacitive deionization. Electrochim Acta 273:34–42CrossRefGoogle Scholar
  56. 56.
    Shi W, Zhou X, Li J, Meshot ER, Taylor AD, Hu S, Kim JH, Elimelech M, Plata DL (2018) High-performance capacitive deionization via manganese oxide-coated, vertically aligned carbon nanotubes. Environ Sci Technol Lett 5(11):692–700CrossRefGoogle Scholar
  57. 57.
    Min X, Hu X, Li X, Wang H, Yang W (2019) Synergistic effect of nitrogen, sulfur-codoping on porous carbon nanosheets as highly efficient electrodes for capacitive deionization. J Colloid Interface Sci 550:147–158CrossRefGoogle Scholar
  58. 58.
    Gao T, Zhou F, Ma W, Li H (2018) Metal-organic-framework derived carbon polyhedron and carbon nanotube hybrids as electrode for electrochemical supercapacitor and capacitive deionization. Electrochim Acta 263:85–93CrossRefGoogle Scholar
  59. 59.
    Qian M, Xuan XY, Pan LK, Gong SQ (2019) Porous carbon electrodes from activated wasted coffee grounds for capacitive deionization. Ionics 25(7):3443–3452CrossRefGoogle Scholar
  60. 60.
    Sami SK, Seo JY, Hyeon SE, Shershah MSA, Yoo PJ, Chung CH (2018) Enhanced capacitive deionization performance by an rGO-SnO2 nanocomposite modified carbon felt electrode. RSC Adv 8(8):4182–4190CrossRefGoogle Scholar
  61. 61.
    Elisadiki J, Jande YAC, Machunda RL, Kibona TE (2019) Porous carbon derived from Artocarpus heterophyllus peels for capacitive deionization electrodes. Carbon 147:582–593CrossRefGoogle Scholar
  62. 62.
    Li D, an NX, Huang Y, Li S (2019) Nitrogen-rich microporous carbon materials for high-performance membrane capacitive deionization. Electrochim Acta 312:251–262CrossRefGoogle Scholar
  63. 63.
    Chang L, Hu YH (2018) Highly conductive porous Na-embedded carbon nanowalls for high-performance capacitive deionization. J Phys Chem Solids 116:347–352CrossRefGoogle Scholar
  64. 64.
    Li Y, Kim J, Wang J, Liu NL, Bando Y, Alshehri AA, Yamauchi Y, Hou CH, Wu KCW (2018) High performance capacitive deionization using modified ZIF-8-derived, N-doped porous carbon with improved conductivity. Nanoscale 10(31):14852–14859CrossRefGoogle Scholar
  65. 65.
    Noonan O, Liu Y, Huang X, Yu C (2018) Layered graphene/mesoporous carbon heterostructures with improved mesopore accessibility for high performance capacitive deionization. J Mater Chem A 6(29):14272–14280CrossRefGoogle Scholar
  66. 66.
    Ahirrao DJ, Tambat S, Pandit AB, Jha N (2019) Sweet-lime-peels-derived activated-carbon-based electrode for highly efficient supercapacitor and flow-through water desalination. ChemistrySelect 4(9):2610–2625CrossRefGoogle Scholar
  67. 67.
    Wu L, Liu M, Huo S, Zang X, Xu M, Ni W, Yang Z, Yan YM (2019) Mold-casting prepared free-standing activated carbon electrodes for capacitive deionization. Carbon 149:627–636CrossRefGoogle Scholar
  68. 68.
    Feng J, Yang Z, Hou S, Li M, Lv R, Kang F, Huang ZH (2018) GO/auricularia-derived hierarchical porous carbon used for capacitive deionization with high performance. Colloids Surfaces A Physicochem Eng Asp 547:134–140CrossRefGoogle Scholar
  69. 69.
    Belaustegui Y, Zorita S, Fernández-Carretero F, García-Luis A, Pantò F, Stelitano S, Frontera P, Antonucci P, Santangelo S (2018) Electro-spun graphene-enriched carbon fibres with high nitrogen-contents for electrochemical water desalination. Desalination 428:40–49CrossRefGoogle Scholar
  70. 70.
    Yang S, Luo M (2019) In-situ embedding ZrO2 nanoparticles in hierarchically porous carbon matrix as electrode materials for high desalination capacity of hybrid capacitive deionization. Mater Lett 248:197–200CrossRefGoogle Scholar
  71. 71.
    Li Y, Liu Y, Shen J, Qi J, Li J, Sun X, Shen J, Han W, Wang L (2018) Design of nitrogen-doped cluster-like porous carbons with hierarchical hollow nanoarchitecture and their enhanced performance in capacitive deionization. Desalination 430:45–55CrossRefGoogle Scholar
  72. 72.
    Amy G, Ghaffour N, Li Z, Francis L, Linares RV, Missimer T, Lattemann S (2017) Membrane-based seawater desalination: present and future prospects. Desalination 401:16–21CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringBeijing University of Chemical Technology (BUCT)BeijingChina
  2. 2.Institute for Applied Materials (IAM)Karlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany

Personalised recommendations