Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 8, pp 2589–2593 | Cite as

Varying internal parameters in the thermal silicon oxidation

  • K. Maser
Short Communication
  • 35 Downloads

Abstract

Key parameters of the Arrhenius relation governing the oxide growth during the thermal oxidation of silicon have been found to depend on oxide thickness. The activation energy (Ea) has been found to decrease from 2.22 to 1.87 eV with increasing oxide thickness from 6.5 to 13 nm, whereas the reference formation rate R0 of silicon oxide decreases from 24.5 to 20.6 pm/s in the same thickness interval. The combination of these findings gives a linear course of the logarithm of reference rate vs. activation energy. In other words, the reference rate of oxide formation obeys an exponential dependence on activation energy. Calculations give the relation R0 [pm/s] = 0.916 exp. (11.05 Ea), with Ea in eV. The results have been obtained by a four-step-program.

Keywords

Silicon Thermal oxidation Kinetics Activation energy 

Notes

Acknowledgments

The author would like to thank Professor Gerald Gerlach (TU Dresden) and Professor Fritz Scholz (Universität Greifswald) for fruitful scientific discussions and encouragement for this report, and Dr. Michael Hermes for his help in publishing this paper.

References

  1. 1.
    Blanc J (1987) The oxidation of silicon by dry oxygen can we distinguish between models? Phil Magaz B 55:685–710CrossRefGoogle Scholar
  2. 2.
    Deal BE, Grove AS (1965) General relationship for the thermal oxidation of silicon. J Appl Phys 36(12):3770–3778CrossRefGoogle Scholar
  3. 3.
    Maser K (1971) Bemerkungen zur thermischen Oxydation von Silizium. Z Physik Chem Leipzig 248:42–44Google Scholar
  4. 4.
    Gerlach G, Maser K (2016) A self-consistent model for thermal oxidation of silicon at low oxide thickness. Adv Cond Matt Phys 7545:632Google Scholar
  5. 5.
    Plummer JD, Deal MD, Griffin PB (2000) Silicon LSI Technology. Prentice Hall, Upper Saddle River, esp. pp 319, 322, 327Google Scholar
  6. 6.
    Nicollian EH, Reisman A (1988) A new model for the thermal oxidation kinetics of silicon. J Electron Mater 17:263–272 esp p 272Google Scholar
  7. 7.
    Han C-J, Helms CR (1988) 18O tracer study of Si oxidation in dry O2 using SIMS. J Electrochem Soc 135:1824–1832CrossRefGoogle Scholar
  8. 8.
    Bongiorno A, Pasquarello A (2002) Oxygen diffusion through the disordered oxide network during silicon oxidation. Phys Rev Lett 88:12 59 01CrossRefGoogle Scholar
  9. 9.
    Bongiorno A, Pasquarello A (2004) Reaction of the oxygen molecule at the Si(100) – SiO2 interface during silicon oxidation. Phys Rev Lett 93:08 61 02CrossRefGoogle Scholar
  10. 10.
    Bongiorno A, Pasquarello A (2005) Atomic-scale modelling of kinetic processes occurring during silicon oxidation. J Phys Condens Matter 17:S2051CrossRefGoogle Scholar
  11. 11.
    Li H, Robertson J (2017) Yttrium passivation of defects in GeO2 and GeO2/Ge interfaces. Appl Phys Lett 110:032903CrossRefGoogle Scholar
  12. 12.
    Gerlach G, Maser K, Saad AM (2009) Activation energy of thermally grown silicon dioxide layers on silicon substrates. Phys Status Solidi B 246:2242–2247CrossRefGoogle Scholar
  13. 13.
    Maser K (1988) Bergauf-Diffusion des Phosphors im Silizium. Ann Physik Leipzig 500:81–101CrossRefGoogle Scholar
  14. 14.
    Maser K (1991) Die Rolle der Überkreuz-Komponenten beim Dotandentransport im Festkörper. Exp Tech Phys 39:169–180Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • K. Maser
    • 1
  1. 1.KleinmachnowGermany

Personalised recommendations