Zn-Co electrocatalysts in lithium-O2 batteries: temperature and rotating cathode effects on the electrodeposition

  • Josiel Martins CostaEmail author
  • Ambrósio Florêncio de Almeida Neto
Original Paper


In this study, we developed Zn-Co catalyst by electrodeposition process in nickel foam and steel mesh electrodes for application as a cathode in Li-O2 batteries. The electrodes were synthesized from an electrolytic bath varying the temperature (25 to 70 °C) and rotating cathode (30 to 100 rpm) by the potentiostatic method. The results of capacities in the Li-O2 cell and catalytic activity measurements showed that the Zn-Co alloy is a promising catalyst for the O2 evolution reaction (OER). Sharp surfaces composed for nanoflakes and heterogeneous surfaces with whitish agglomerates which may have increased the surface area for the housing of the discharge products was observed by scanning electron microscopy (SEM). X-ray diffraction (XRD) evidenced Zn21Co5 composition and Raman spectra evidenced discharge product Li2O2. The maximum charge capacity of 399 mAh gc−1 for steel mesh and 182 mAh gc−1 for nickel foam electrode suggests the use of this alloy as catalysts in Li-O2 batteries.

Graphical abstract



Energy storage materials Electrochemical performance Alloys Oxygen evolution reaction 


Funding information

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Supplementary material

10008_2019_4334_MOESM1_ESM.docx (683 kb)
ESM 1 (DOCX 683 kb)


  1. 1.
    Deosarkar MP, Pawar SM, Bhanvase BA (2014) In situ sonochemical synthesis of Fe3O4-graphene nanocomposite for lithium rechargeable batteries. Chem Eng Process 83:49–55CrossRefGoogle Scholar
  2. 2.
    Yang X, Leng J, Wang D, Wang Z, Wang J-X, Pu Y, Shui J, Chen J-F (2017) Synthesis of flower-shaped V2O5:Fe3+ microarchitectures in a high-gravity rotating packed bed with enhanced electrochemical performance for lithium ion batteries. Chem Eng Process 120:201–206CrossRefGoogle Scholar
  3. 3.
    Li Y, Gao H, Sun Z, Li Q, Xu Y, Ge C, Cao Y (2018) Tuning morphology and conductivity in two-step synthesis of zinc-cobalt oxide and sulfide hybrid nanoclusters as highly-performed electrodes for hybrid supercapacitors. J Solid State Electrochem 22(10):3197–3207CrossRefGoogle Scholar
  4. 4.
    Moureaux F, Stevens P, Toussaint G, Chatenet M (2013) Development of an oxygen-evolution electrode from 316L stainless steel: application to the oxygen evolution reaction in aqueous lithium–air batteries. J Power Sources 229:123–132CrossRefGoogle Scholar
  5. 5.
    Lu Y-C, Gallant BM, Kwabi DG, Harding JR, Mitchell RR, Whittingham MS, Shao-Horn Y (2013) Lithium-oxygen batteries: bridging mechanistic understanding and battery performance. Energy Environ Sci 6(3):750–768CrossRefGoogle Scholar
  6. 6.
    Suen N-T, Hung S-F, Quan Q, Zhang N, Xu Y-J, Chen HM (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46(2):337–365CrossRefGoogle Scholar
  7. 7.
    Tan P, Chen B, Xu H, Zhang H, Cai W, Ni M, Liu M, Shao Z (2017) Flexible Zn- and Li-air batteries: recent advances, challenges, and future perspectives. Energy Environ Sci 10(10):2056–2080CrossRefGoogle Scholar
  8. 8.
    Zhu K, Zhu X, Yang W (2019) Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew Chem Int Ed 58(5):1252–1265CrossRefGoogle Scholar
  9. 9.
    Sakita AMP, Noce RD, Vallés E, Benedetti AV (2018) Pulse electrodeposition of CoFe thin films covered with layered double hydroxides as a fast route to prepare enhanced catalysts for oxygen evolution reaction. Appl Surf Sci 434:1153–1160CrossRefGoogle Scholar
  10. 10.
    Zhao G, Zhang L, Pan T, Sun K (2013) Preparation of NiO/multiwalled carbon nanotube nanocomposite for use as the oxygen cathode catalyst in rechargeable Li–O2 batteries. J Solid State Electrochem 17(6):1759–1764CrossRefGoogle Scholar
  11. 11.
    Wang F, Wu X, Shen C, Wen Z (2016) Facile synthesis of Fe@Fe2O3 core-shell nanowires as O2 electrode for high-energy Li-O2 batteries. J Solid State Electrochem 20(7):1831–1836CrossRefGoogle Scholar
  12. 12.
    Zeng J, Amici J, Monteverde Videla AHA, Francia C, Bodoardo S (2017) Synthesis of mesoporous carbons and reduced graphene oxide and their influence on the cycling performance of rechargeable Li-O2 batteries. J Solid State Electrochem 21(2):503–514CrossRefGoogle Scholar
  13. 13.
    Yang J, Li Y, Mi H, Zhang P, Deng L, Sun L, Ren X (2018) Enhanced electrocatalytic performance of Fe-TiO2/N-doped graphene cathodes for rechargeable Li-O2 batteries. J Solid State Electrochem 22(3):909–917CrossRefGoogle Scholar
  14. 14.
    Wang J, Cui W, Liu Q, Xing Z, Asiri AM, Sun X (2016) Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv Mater 28(2):215–230CrossRefGoogle Scholar
  15. 15.
    Anis SF, Lalia BS, Mostafa AO, Hashaikeh R (2017) Electrospun nickel–tungsten oxide composite fibers as active electrocatalysts for hydrogen evolution reaction. J Mater Sci 52(12):7269–7281CrossRefGoogle Scholar
  16. 16.
    Zhang M, Gao J, Hong W, Wang X, Tian Q, An Z, Wang L, Yao H, Liu Y, Zhao X, Qiu H (2019) Bimetallic Mn and Co encased within bamboo-like N-doped carbon nanotubes as efficient oxygen reduction reaction electrocatalysts. J Colloid Interface Sci 537:238–246CrossRefGoogle Scholar
  17. 17.
    Gao R, Yang Z, Zheng L, Gu L, Liu L, Lee Y, Hu Z, Liu X (2018) Enhancing the catalytic activity of Co3O4 for Li–O2 batteries through the synergy of surface/interface/doping engineering. ACS Catal 8(3):1955–1963CrossRefGoogle Scholar
  18. 18.
    Gao R, Shang Z, Zheng L, Wang J, Sun L, Hu Z, Liu X (2019) Enhancing the catalytic activity of Co3O4 nanosheets for Li-O2 batteries by the incoporation of oxygen vacancy with hydrazine hydrate reduction. Inorg Chem 58(8):4989–4996CrossRefGoogle Scholar
  19. 19.
    Zheng Y, Gao R, Zheng L, Sun L, Hu Z, Liu X (2019) Ultrathin Co3O4 nanosheets with edge-enriched {111} planes as efficient catalysts for lithium–oxygen batteries. ACS Catal 9(5):3773–3782CrossRefGoogle Scholar
  20. 20.
    Wang X, Hou X, Wang Q, Ge W, Guo S (2019) In situ fabrication of flaky-like NiMn-layered double hydroxides as efficient catalyst for Li-O2 battery. J Solid State Electrochem 23(4):1121–1128CrossRefGoogle Scholar
  21. 21.
    Pushpavanam M, Natarajan SR, Balakrishnan K, Sharma LR (1991) Corrosion behaviour of electrodeposited zinc-nickel alloys. J Appl Electrochem 21(7):642–645CrossRefGoogle Scholar
  22. 22.
    Li P, Sun W, Yu Q, Guan M, Qiao J, Wang Z, Rooney D, Sun K (2015) An effective three-dimensional ordered mesoporous ZnCo2O4 as electrocatalyst for Li-O2 batteries. Mater Lett 158:84–87CrossRefGoogle Scholar
  23. 23.
    Costa JM, de Morais Nepel TC, de Almeida Neto AF (2019) Influence of current density and W concentration on Co–W alloys used as catalysts in electrodes for Li–O2 batteries. Chem Pap 73(5):1103–1112CrossRefGoogle Scholar
  24. 24.
    Sivagami IN, Prasanna K, Santhoshkumar P, Jo YN, Seo GY, Lee CW (2017) Agar templated electrodeposition of binary zinc-cobalt alloy and formation of zinc-cobalt-carbon nanocomposite for application in secondary lithium batteries. J Alloys Compd 697:450–460CrossRefGoogle Scholar
  25. 25.
    Sulciute A, Baltrusaitis J, Valatka E (2015) Structure, morphology and electrochemical properties of zinc-cobalt oxide films on AISI 304 type steel. J Appl Electrochem 45(5):405–417CrossRefGoogle Scholar
  26. 26.
    Lu Y-C, Gasteiger HA, Crumlin E, McGuire R, Shao-Horn Y (2010) Electrocatalytic activity studies of select metal surfaces and implications in Li-air batteries. J Electrochem Soc 157(9):A1016–A1025CrossRefGoogle Scholar
  27. 27.
    Wang X, Xue H, Na Z, Yin D, Li Q, Wang C, Wang L, Huang G (2018) Metal organic frameworks route to prepare two-dimensional porous zinc-cobalt oxide plates as anode materials for lithium-ion batteries. J Power Sources 396:659–666CrossRefGoogle Scholar
  28. 28.
    Liang S, Cao X, Wang Y, Hu Y, Pan A, Cao G (2016) Uniform 8LiFePO4·Li3V2(PO4)3/C nanoflakes for high-performance Li-ion batteries. Nano Energy 22:48–58CrossRefGoogle Scholar
  29. 29.
    Liu X, Shi S, Xiong Q, Li L, Zhang Y, Tang H, Gu C, Wang X, Tu J (2013) Hierarchical NiCo2O4@NiCo2O4 Core/Shell nanoflake arrays as high-performance supercapacitor materials. ACS Appl Mater Interfaces 5(17):8790–8795CrossRefGoogle Scholar
  30. 30.
    Zhang J, Yuan B, Ma J, Wei J, Wang J, Zhou J, Zhang R, Zhang D (2017) Synthesis of Zn0.3Co2.7O4 porous willow-leaf like structure for enhanced electrocatalytic oxygen evolution reaction. Mater Lett 198:196–200CrossRefGoogle Scholar
  31. 31.
    Shekhanov RF, Gridchin SN, Balmasov AV (2017) Electroplating of zinc–cobalt alloys from oxalate electrolytes. Prot Met Phys Chem Surf 53(3):483–487CrossRefGoogle Scholar
  32. 32.
    Higashi K, Fukushima H, Urakawa T, Adaniya T, Matsudo K (1981) Mechanism of the electrodeposition of zinc alloys containing a small amount of cobalt. J Electrochem Soc 128(10):2081–2085CrossRefGoogle Scholar
  33. 33.
    Chu Q, Liang J, Hao J (2014) Electrodeposition of zinc-cobalt alloys from choline chloride–urea ionic liquid. Electrochim Acta 115:499–503CrossRefGoogle Scholar
  34. 34.
    Lee Y-H, Chang K-H, Hu C-C (2013) Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen-doped reduced graphene oxide in acidic and alkaline electrolytes. J Power Sources 227:300–308CrossRefGoogle Scholar
  35. 35.
    de Rivas B, López-Fonseca R, Jiménez-González C, Gutiérrez-Ortiz JI (2011) Synthesis, characterisation and catalytic performance of nanocrystalline Co3O4 for gas-phase chlorinated VOC abatement. J Catal 281(1):88–9727CrossRefGoogle Scholar
  36. 36.
    Garcia JR, do Lago DCB, Cesar DV, Senna LF (2016) Pulsed cobalt-rich Zn–Co alloy coatings produced from citrate baths. Surf Coat Technol 306:462–472CrossRefGoogle Scholar
  37. 37.
    Heine J, Rodehorst U, Badillo JP, Winter M, Bieker P (2015) Chemical stability investigations of polyisobutylene as new binder for application in lithium-air batteries. Electrochim Acta 155:110–115CrossRefGoogle Scholar
  38. 38.
    Lu Y-C, Gasteiger HA, Parent MC, Chiloyan V, Shao-Horn Y (2010) The influence of catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries. Electrochem Solid-State Lett 13(6):A69–A72CrossRefGoogle Scholar
  39. 39.
    Tang C-W, Wang C-B, Chien S-H (2008) Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochim Acta 473(1):68–7331CrossRefGoogle Scholar
  40. 40.
    Dilimon VS, Lee D-G, Yim S-D, Song H-K (2015) Multiple roles of superoxide on oxygen reduction reaction in Li+-containing nonaqueous electrolyte: contribution to the formation of oxide as well as peroxide. J Phys Chem C 119(7):3472–3480CrossRefGoogle Scholar
  41. 41.
    Gittleson FS, Ryu W-H, Taylor AD (2014) Operando observation of the gold-electrolyte interface in Li-O2 batteries. ACS Appl Mater Interfaces 6(21):19017–19025CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Electrochemical Processes and Anticorrosion, Department of Products and Processes Design, School of Chemical EngineeringUniversity of CampinasCampinasBrazil

Personalised recommendations