Advertisement

Rapid precipitation-reduction synthesis of carbon-supported silver for efficient oxygen reduction reaction in alkaline solution

  • Shijin Cai
  • Jutao JinEmail author
  • Xiaochang Qiao
  • Wenlong Wang
  • Pan Jiang
  • Jianwei GuoEmail author
  • Hongbo FanEmail author
Short Communication
  • 45 Downloads

Abstract

Silver has emerged as a promising electrocatalyst for oxygen reduction reaction (ORR) in alkaline membrane fuel cell for its high stability in alkaline solution. However, the electrocatalytic activity of silver-based ORR electrocatalyst is generally poor. This paper presents a rapid precipitation-reduction method to synthesize carbon-supported silver electrocatalysts, which involves precipitating AgBr compound on carbon support, and then transforming it into carbon-supported silver via an in situ electrochemical reduction process. The obtained electrocatalysts show excellent oxygen reduction performances in terms of E½ (0.84 V vs. RHE) and mass specific activity Jm (9.1 mA mgAg−1@0.85 V), outperforming most of recent reported silver-based ORR electrocatalysts. Further experiment indicates that the improved electrocatalytic performances can be assigned to the presence of lattice defects at Ag surface, which can facilitate the adsorption and further reduction of oxygen molecular on the silver surface.

Keywords

Precipitation-reduction synthesis Carbon-supported silver Oxygen reduction reaction Alkaline solution 

Notes

Funding information

This work was financially supported by the National Natural Science Foundation of China (no. 21403227), Technology Planning Project of Guangdong Province (no. 2015B090927007), leading talents of innovation and entrepreneurship of the Dongguan City D2017(16), and Startup Research Fund of Dongguan University Of Technology (KCYKYQD2017015).

Supplementary material

10008_2019_4331_MOESM1_ESM.docx (6.9 mb)
ESM 1 (DOCX 7084 kb)

References

  1. 1.
    Cano ZP, Banham D, Ye S, Hintennach A, Lu J, Fowler M, Chen Z (2018) Batteries and fuel cells for emerging electric vehicle markets. Nat Ener 3(4):279–289CrossRefGoogle Scholar
  2. 2.
    Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486(7401):43–51CrossRefGoogle Scholar
  3. 3.
    Pan ZF, An L, Zhao TS, Tang ZK (2018) Advances and challenges in alkaline anion exchange membrane fuel cells. Prog Energy Combust Sci 66:141–175CrossRefGoogle Scholar
  4. 4.
    Pan J, Chen C, Zhuang J, Lu J (2011) Designing advanced alkaline polymer electrolytes for fuel cell applications. Acc Chem Res 45:473–481CrossRefGoogle Scholar
  5. 5.
    Strmcnik D, Uchimura M, Wang C, Subbaraman R, Danilovic N, van der V, Paulikas AP, Stamenkovic VR, Markovic NM (2013) Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat Chem 5(4):300–306CrossRefGoogle Scholar
  6. 6.
    Alia SM, Pivovar BS, Yan Y (2013) Platinum-coated copper nanowires with high activity for hydrogen oxidation reaction in base. J Am Chem Soc 135(36):13473–13478CrossRefGoogle Scholar
  7. 7.
    Holewinski A, Idrobo JC, Linic S (2014) High-performance ag–co alloy catalysts for electrochemical oxygen reduction. Nat Chem 6(9):828–834CrossRefGoogle Scholar
  8. 8.
    Maurya S, Noh S, Matanovic I, Park EJ, Narvaez Villarrubia C, Martinez U, Han J, Bae C, Kim YS (2008) Rational design of polyaromatic ionomers for alkaline membrane fuel cells with >1 W cm−2 power density. Energy Environ Sci 11:3283–3291CrossRefGoogle Scholar
  9. 9.
    Setzler BP, Zhuang Z, Wittkopf JA, Yan Y (2016) Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells. Nat Nano 11(12):1020–1025CrossRefGoogle Scholar
  10. 10.
    Qaseem A, Chen F, Wu X, Johnston RL (2016) Pt-free silver nanoalloy electrocatalysts for oxygen reduction reaction in alkaline media. Catal Sci Technol 6(10):3317–3340CrossRefGoogle Scholar
  11. 11.
    Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Chem Phys B 108(46):17886–17892CrossRefGoogle Scholar
  12. 12.
    Van Cleve T, Gibara E, Linic S (2016) Electrochemical oxygen reduction reaction on ag nanoparticles of different shapes. ChemCatChem 8(1):256–261CrossRefGoogle Scholar
  13. 13.
    Yang X, Gan L, Zhu C, Lou B, Han L, Wang J, Wang E (2014) A dramatic platform for oxygen reduction reaction based on silver nanoclusters. Chem Commun 50(2):234–236CrossRefGoogle Scholar
  14. 14.
    Alia SM, Duong K, Liu T, Jensen K, Yan Y (2012) Supportless silver nanowires as oxygen reduction reaction catalysts for hydroxide-exchange membrane fuel cells. ChemSusChem 5(8):1619–1624CrossRefGoogle Scholar
  15. 15.
    Blizanac BB, Ross PN, Marković MM (2006) Oxygen reduction on silver low-index single-crystal surfaces in alkaline solution: rotating ring disk Ag (hkl) studies. J Chem Phys B 110(10):4735–4741CrossRefGoogle Scholar
  16. 16.
    Ohyama J, Okata Y, Watabe N, Katagiri M, Nakamura A, Arikawa H, Shimizu KI, Takeguchi T, Ueda W, Satsuma A (2014) Oxygen reduction reaction over silver particles with various morphologies and surface chemical states. J Power Sources 245:998–1004CrossRefGoogle Scholar
  17. 17.
    Slanac DA, Hardin WG, Johnston KP, Stevenson KJ (2012) Atomic ensemble and electronic effects in ag-rich AgPd nanoalloy catalysts for oxygen reduction in alkaline media. J Am Chem Soc 134(23):9812–9819CrossRefGoogle Scholar
  18. 18.
    Zhou R, Qiao SZ (2014) Silver/nitrogen-doped graphene interaction and its effect on electrocatalytic oxygen reduction. Chem Mater 26(20):5868–5873CrossRefGoogle Scholar
  19. 19.
    Davis DJ, Raji ARO, Lambert TN, Vigil JA, Li L, Nan K (2014) Tour JM Silver-graphene nanoribbon composite catalyst for the oxygen reduction reaction in alkaline electrolyte. Electroanalysis 26: 164–170, 1Google Scholar
  20. 20.
    Maheswari S, Sridhar P, Pitchumani S (2012) Carbon-supported silver as cathode electrocatalyst for alkaline polymer electrolyte membrane fuel cells. Electrocatalysis 3(1):13–21CrossRefGoogle Scholar
  21. 21.
    Tammeveski L, Erikson H, Sarapuu A, Kozlova J, Ritslaid P, Sammelselg V, Tammeveski K (2012) Electrocatalytic oxygen reduction on silver nanoparticle/multi-walled carbon nanotube modified glassy carbon electrodes in alkaline solution. Electrochem Commun 20:15–18CrossRefGoogle Scholar
  22. 22.
    Guo J, Hsu A, Chu D, Chen R (2010) Improving oxygen reduction reaction activities on carbon-supported ag nanoparticles in alkaline solutions. J Chem Phys C 114(10):4324–4330CrossRefGoogle Scholar
  23. 23.
    Stamenović U, Gavrilov N, Pašti IA, Otoničar M, Ćirić-Marjanović G, Škapin SD, Mitrić M, Vodnik V (2018) One-pot synthesis of novel silver-polyaniline-polyvinylpyrrolidone electrocatalysts for efficient oxygen reduction reaction. Electrochim Acta 281:549–561CrossRefGoogle Scholar
  24. 24.
    Yuan L, iang L, Liu J, Xia Z, Wang S, Sun G (2014) Facile synthesis of silver nanoparticles supported on three dimensional graphene oxide/carbon black composite and its application for oxygen reduction reaction. Electrochim Acta 135:168–174CrossRefGoogle Scholar
  25. 25.
    Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou XW, Xie Y (2013) Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv Mater 25(40):5807–5813CrossRefGoogle Scholar
  26. 26.
    Li M, Zhao Z, Cheng T, Fortunelli A, Chen CY, Yu R, Zhang Q, Gu L, Merinov B, Lin Z, Zhu E, Yu T, Jia Q, Guo J, Zhang L, Goddard WA, Huang Y, Duan X (2016) Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354(6318):1414–1419CrossRefGoogle Scholar
  27. 27.
    Mistry H, Choi YW, Bagger A, Scholten F, Bonifacio CS, Sinev I, Divins NJ, Zegkinoglou I, Jeon HS, Kisslinger K, Stach EA, Yang JC, Rossmeisl J, Roldan Cuenya B (2017) Enhanced carbon dioxide electroreduction to carbon monoxide over defect-rich plasma-activated silver catalysts. Angew Chem Int Ed 56(38):11394–11398CrossRefGoogle Scholar
  28. 28.
    Wang C, Zhang Z, Yang G, Chen Q, Yin Y, Jin M (2016) Creation of controllable high-density defects in silver nanowires for enhanced catalytic property. Nano Lett 16(9):5669–5674CrossRefGoogle Scholar
  29. 29.
    Xie X, Wei M, Du L, Nie Y, Qi X, Shao Y, Wei Z (2017) Enhancement in kinetics of the oxygen reduction on a silver catalyst by introduction of interlaces and defect-rich facets. J Mater Chem A 5(29):15390–15394CrossRefGoogle Scholar
  30. 30.
    Zhou YZ, Huang JP, Shi WD, Li Y, Wu YY, Liu QQ, Zhu J, Zhao N, Zhang LL, Yang J, Cheng XN (2018) Ecofriendly and environment-friendly synthesis of size-controlled silver nanoparticles/graphene composites for antimicrobial and SERS actions. Appl Surf Sci 457:1000–1008CrossRefGoogle Scholar
  31. 31.
    Okazaki KI, Kiyama T, Hirahara K, Tanaka N, Kuwabata S, Torimoto T (2008) Single-step synthesis of gold-silver alloy nanoparticles in ionic liquids by a sputter deposition technique, Chem Commun, 0, 691–693, 6Google Scholar
  32. 32.
    Wang H, Liu Y, Hu P, He L, Li J, Guo L (2013) AgBr nanocrystals from plates to cubes and their photocatalytic properties. ChemCatChem 5(6):1426–1430CrossRefGoogle Scholar
  33. 33.
    Cheng F, Shen J, Peng B, Pan Y, Tao Z, Chen J (2011) Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat Chem 3(1):79–84CrossRefGoogle Scholar
  34. 34.
    Garcia AC, Gasparotto LHS, Gomes JF, Tremiliosi-Filho G (2012) Straightforward synthesis of carbon-supported ag nanoparticles and their application for the oxygen reduction reaction. Electrocatalysis 3(2):147–152CrossRefGoogle Scholar
  35. 35.
    Herrero E, Buller LJ, Abruña HD (2001) Underpotential deposition at single crystal surfaces of au, Pt, ag and other materials. Chem Rev 101(7):1897–1930CrossRefGoogle Scholar
  36. 36.
    Zhou Y, Lu Q, Zhuang Z, Hutchings GS, Kattel S, Yan Y, Chen JG, Xiao JQ, Jiao F (2015) Oxygen reduction at very low overpotential on nanoporous Ag catalysts. Adv Ener Mater 5(13):1500149CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Sciences and EngineeringDongguan University of TechnologyDongguanPeople’s Republic of China
  2. 2.School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations