Advertisement

Polyethyleneimine-AuNPs-copper protoporphyrin nanocomposite: a novel biosensor for sensitive detection of hydrogen peroxide in human serum

  • Yanju Liu
  • Zhuangzhuang Guo
  • Lulu Hao
  • Xinchang Shi
  • Shuxun YanEmail author
  • Huaixia YangEmail author
Original Paper
  • 4 Downloads

Abstract

The detection of hydrogen peroxide (H2O2) is essential due to its extensive application in bio-medical and environment. Herein, we synthesized a novel polyethyleneimine-Au nanoparticle-copper protoporphyrin (PEI-AuNPs-CuPP) nanocomposite toward H2O2 detection. Ultraviolet-visible spectrometry (UV-vis), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR) were used to characterize this nanomaterial. Analytical performance of this proposed sensor was evaluated through differential pulse voltammetry (DPV) and cyclic voltammetry (CV). It was found surprisingly that the PEI-AuNPs-CuPP-based sensor exhibited sensing for H2O2 with a detection limit of 91.74 aM. In addition, this sensor displayed superb selectivity in the presence of dopamine (DA), ascorbic acid (AA), uric acid (UA), and glucose (Glu), which held satisfactory analytical performance for the detection of H2O2 in human serum samples, indicating a promising application in biological sample analysis.

Graphical abstract

Keywords

PEI-AuNPs-CuPP nanocomposite Peroxidase H2O2 detection Electrochemical sensor 

Notes

Funding information

This work was supported by two funds: the National Natural Science Foundation of China (21575066) and Science and Technology Research Projects of Henan province (no. 162102310462).

References

  1. 1.
    Tian Z, Huang W, Xu BR, Li XL, Mei YF (2018) Nano Lett 18(6):3688–3694CrossRefGoogle Scholar
  2. 2.
    Kong JM, Yu XH, Hu WW, Hu Q, Shui SL, Li LZ, Han XJ, Xie HF, Zhang XJ, Wang TH (2015) Analyst 140(22):7792–7798CrossRefGoogle Scholar
  3. 3.
    Haugner JC, Seelig B (2013) Chem Commun 49(66):7322–7324CrossRefGoogle Scholar
  4. 4.
    Shahamirifard SA, Ghaedi M, Razmi Z, Hajati S (2018) Biosens Bioelectron 114:30–36CrossRefGoogle Scholar
  5. 5.
    Gao XH, He SJ, Zhang CM, Du C, Chen X, Xing W, Chen SL, Clayborne AD, Chen W (2016) Adv Sci 3:1–7Google Scholar
  6. 6.
    Liu MM, Liu R, Chen W (2013) Biosens. Bioelectron 45:206–212CrossRefGoogle Scholar
  7. 7.
    Reed JH, Shi YL, Zhu QH, Chakraborty S, Mirts EN, Petrik ID, Bhagi-Damodaran A, Ross M, Moenne-Loccoz P, Zhang Y, Lu Y (2017) J Am Chem Soc 139(35):12209–12218CrossRefGoogle Scholar
  8. 8.
    Li JF, Peng Q, Oliver AG, Alp EE, Hu MY, Zhao JY, Sage JT, Scheidt WR (2014) J Am Chem Soc 136(52):18100–18110CrossRefGoogle Scholar
  9. 9.
    Gottfried JM (2015) Surf Sci Rep 70(3):259–379CrossRefGoogle Scholar
  10. 10.
    Buchler JW, Smith PD (1974) Angew Chem 13(11):745–745CrossRefGoogle Scholar
  11. 11.
    Barnett BR, Evans AL, Roberts CC, Fritsch JM (2011) Chemosphere 82(4):592–596CrossRefGoogle Scholar
  12. 12.
    Collman JP, Kaplun M, Decreau RA (2006) Dalton Trans 4:554–559CrossRefGoogle Scholar
  13. 13.
    Apaydin DH, Seelajaroen H, Pengsakul O, Thamyongkit P, Sariciftci NS, Kunze-Liebhauser J, Portenkirchner E (2018) ChemCatChem 10(8):1793–1797CrossRefGoogle Scholar
  14. 14.
    Walkey C, Das S, Seal S, Erlichman J, Heckman K, Ghibelli L, Traversa E, McGinnis JF, Self WT (2015) Environ Sci Nano 2(1):33–53CrossRefGoogle Scholar
  15. 15.
    Ju J, Chen W (2015) Anal. Chem 87(3):1903–1910CrossRefGoogle Scholar
  16. 16.
    de la Rica R, Stevens MM (2012) Nat Nanotechnol 7(12):821–824CrossRefGoogle Scholar
  17. 17.
    Hu M, Tian J, Lu HT, Weng LX, Wang LH (2010) Talanta 8:997–1002CrossRefGoogle Scholar
  18. 18.
    Mvango S, Mashazi P (2019) Mat Sci Eng C-Mater 96:814–823CrossRefGoogle Scholar
  19. 19.
    Zhang CM, Li L, Ju J, Chen W (2016) Electrochim Acta 210:181–189CrossRefGoogle Scholar
  20. 20.
    Dos Santos Pereira T, Mauruto de Oliveira GC, Santos FA, Raymundo-Pereira PA, Oliveira ONJ, Janegitz BC (2019) Talanta 194:737–744CrossRefGoogle Scholar
  21. 21.
    Giorgio M, Trinei M, Migliaccio E, Pelicci PG (2007) Nat Rev Mol Cell Biol 8(9):722–728CrossRefGoogle Scholar
  22. 22.
    Laloi C, Apel K, Danon A (2004) Curr Opin Plant Biol 7(3):323–328CrossRefGoogle Scholar
  23. 23.
    Dehhaghi M, Tan V, Heng B, Mohammadipanah F, Guillemin GJ (2018) Neuroscience 399:1–11CrossRefGoogle Scholar
  24. 24.
    Rao MS, Rao AR, Ramana KV, Sagi SR (1990) Talanta 37(7):753–755CrossRefGoogle Scholar
  25. 25.
    Mori I, Takasaki K, Fujita Y, Matsuo T (1998) Talanta 47(3):631–637CrossRefGoogle Scholar
  26. 26.
    Jie N, Yang J, Huang X, Zhang R, Song Z (1995) Talanta 42(11):1575–1579CrossRefGoogle Scholar
  27. 27.
    Li LL, Wang YQ, Pan LJ, Shi Y, Cheng W, Shi Y, Yu GH (2015) Nano Lett 15(2):1146–1151CrossRefGoogle Scholar
  28. 28.
    Tolstoy VP, Gulina LB, Golubeva AA, Ermakov SS, Gurenko VE, Navolotskaya DV, Vladimirova NI, Koroleva AV (2019) J Solid State Electrochem 23(2):573–582CrossRefGoogle Scholar
  29. 29.
    Nikolaev KG, Maybeck V, Neumann E, Ermakov SS, Ermolenko YE, Offenhausser A, Mourzina YG (2018) J Solid State Electrochem 22(4):1023–1035CrossRefGoogle Scholar
  30. 30.
    Yu Z, Park Y, Chen L, Zhao B, Jung YM, Cong Q (2015) ACS Appl Mater Interfaces 7(42):23472–23480CrossRefGoogle Scholar
  31. 31.
    Cheng CF, Zhang CM, Gao XH, Zhuang ZH, Du C, Chen W (2018) Anal Chem 90(3):1983–1991CrossRefGoogle Scholar
  32. 32.
    Zhang CM, Zhang RZ, Gao XH, Cheng CF, Hou L, Li XK, Chen W (2018) ACS Omega 3(1):96–105CrossRefGoogle Scholar
  33. 33.
    Kadiyala NK, Mandal BK, Ranjan S, Dasgupta N (2018) Mat Sci Eng C-Mater 93:191–205CrossRefGoogle Scholar
  34. 34.
    Kohout C, Santi C, Polito L (2018) Int J Mol Sci 19(11):3385CrossRefGoogle Scholar
  35. 35.
    Otero TF, Martinez Soria LX, Schumacher J, Valero L, Pascual VH (2017) Chem Open 6(1):25–32Google Scholar
  36. 36.
    Tasbandi A, Koushki E, Eshghi H (2017) Opt Quant Electron 49:124–134CrossRefGoogle Scholar
  37. 37.
    Panwar V, Jain SL (2019) Am J Mater Sci Eng 99:191–201CrossRefGoogle Scholar
  38. 38.
    Ravichandran S, Nagarajan S, Kokil A, Ponrathnam T, Bouldin RM, Bruno FF, Samuelson L, Kumar J, Nagarajan R (2012) Langmuir 2:13380–13386CrossRefGoogle Scholar
  39. 39.
    Zou J, Zhao GQ, Teng J, Liu Q, Jiang XY, Jiao FP, Yu JG (2019) Microchem 145:693–702CrossRefGoogle Scholar
  40. 40.
    Fagadar-Cosma E, Sebarchievici I, Lascu A, Creanga I, Palade A, Birdeanu M, Fagadar-Cosma G (2016) J Alloys Compd 686:896–904CrossRefGoogle Scholar
  41. 41.
    Zhang GY, Deng SY, Zhang XJ, Shan D (2016) Electrochim Acta 190:64–68CrossRefGoogle Scholar
  42. 42.
    Balamurugan J, Thanh TD, Karthikeyan G, Kim NH, Lee JH (2017) Biosens Bioelectron 89:970–977CrossRefGoogle Scholar
  43. 43.
    Ran G, Yi WJ, Li Y, Luo HQ, Li NB (2012) Methods 4:2929–2934Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Pharmacy CollegeHenan University of Chinese MedicineZhengzhouPeople’s Republic of China
  2. 2.Department of EndocrinologyThe First Affiliated Hospital of Henan University of Chinese MedicineZhengzhouPeople’s Republic of China

Personalised recommendations