Advertisement

Synthesis and electrochemical performance of high surface area hierarchical porous carbon with ultrahigh mesoporosity for high-performance supercapacitors

  • Chang Ma
  • Jiankang Xu
  • Qingchao Fan
  • Jingli ShiEmail author
  • Yan Song
Original Paper
  • 34 Downloads

Abstract

Hierarchical porous carbons (HPCs) with both high Brunauer–Emmett–Teller (BET) surface area and high mesoporosity have been synthesized by combination of self-template and one-step carbonization–activation strategy. Ferric citrate (FC) was used as the carbon precursor and self-template source, which not only produced a great number of mesopores with size of 5–20 nm but also brought about high content of graphitic structures by catalytic graphitization. The KOH dosage played a significant role in adjusting the BET surface area and pore size distribution. Importantly, considerable mesopores with width of 2–4 nm were created by KOH, owing to which both high BET surface area and high mesoporosity were achieved. The resultant HPCs exhibited high BET surface area (2055 m2 g−1), large pore volume (2.527 cm3 g−1), and ultrahigh mesoporosity (95.1%). As the electrode material for supercapacitors, the HPC presents a high specific capacitance of 289 F g−1 at 0.2 A g−1 and maintains 205 F g−1 at 30 A g−1 with the capacitance retention of 71% in 6 M KOH electrolyte. Additionally, the HPC-based two-electrode supercapacitor with 1 M Na2SO4 solution as electrolyte delivered a high energy density of 18.24 Wh kg−1 at a power density of 499 W kg−1 and retained 11.63 Wh kg−1 at a power density of 15 kW kg−1. The simple process and excellent performances make HPCs quite promising alternative for application of high-performance supercapacitors in the next generation.

Keywords

Hierarchical porous carbon Supercapacitors Self-template Ultrahigh mesoporosity 

Notes

Funding information

This study is financially supported by the University of Science and Technology Development Fund Planning Project of Tianjin (2017KJ072).

Supplementary material

10008_2019_4316_MOESM1_ESM.docx (366 kb)
ESM 1 (DOCX 366 kb)

References

  1. 1.
    Xie K, Wei B (2014) Materials and structures for stretchable energy storage and conversion devices. Adv Mater 26:3592–3617CrossRefGoogle Scholar
  2. 2.
    Dincer I (2000) Renewable energy and sustainable development: a crucial review. Renew Sust Energ Rev 4:157–175CrossRefGoogle Scholar
  3. 3.
    Li X, Wei B (2013) Supercapacitors based on nanostructured carbon. Nano Energy 2:159–173CrossRefGoogle Scholar
  4. 4.
    Beguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26:2219–2251CrossRefGoogle Scholar
  5. 5.
    Kondrat S, Perez CR, Presser V, Gogotsi Y, Kornyshev AA (2012) Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors. Energy Environ Sci 5:6474–6479CrossRefGoogle Scholar
  6. 6.
    Wang H, Yi H, Zhu C, Wang X, Fan HJ (2015) Functionalized highly porous graphitic carbon fibers for high-rate supercapacitive electrodes. Nano Energy 13:658–669CrossRefGoogle Scholar
  7. 7.
    Chang B, Guo Y, Li Y, Yin H, Zhang S, Yang B, Dong X (2015) Graphitized hierarchical porous carbon nanospheres: simultaneous activation/graphitization and superior supercapacitance performance. J Mater Chem A 3:9565–9577CrossRefGoogle Scholar
  8. 8.
    Bhandari N, Dua R, Estevez L, Sahore R, Giannelis EP (2015) A combined salt-hard templating approach for synthesis of multi-modal porous carbons used for probing the simultaneous effects of porosity and electrode engineering on EDLC performance. Carbon 87:29–43CrossRefGoogle Scholar
  9. 9.
    Peng C, Wen Z, Qin Y, Schmidt-Mende L, Li C, Yang S, Shi D, Yang J (2014) Three-dimensional graphitized carbon nanovesicles for high- performance supercapacitors based on ionic liquids. ChemSusChem 7:777–784CrossRefGoogle Scholar
  10. 10.
    Qie L, Chen W, Xu H, Xiong X, Jiang Y, Zou F, Hu X, Xin Y, Zhang Z, Huang Y (2013) Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ Sci 6:2497–2504CrossRefGoogle Scholar
  11. 11.
    Shao J, Ma F, Wu G, Dai C, Geng W, Song S, Wan J (2017) In-situ MgO (CaCO3) templating coupled with KOH activation strategy for high yield preparation of various porous carbons as supercapacitor electrode materials. Chem Eng J 321:301–313CrossRefGoogle Scholar
  12. 12.
    He X, Li X, Ma H, Han J, Zhang H, Yu C, Xiao N, Qiu J (2017) ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials. J Power Sources 340:183–191CrossRefGoogle Scholar
  13. 13.
    Yao Y, Zhang Y, Li L, Wang S, Dou S, Liu X (2017) Fabrication of hierarchical porous carbon nanoflakes for high-performance supercapacitors. ACS Appl Mater Interfaces 9:34944–34953CrossRefGoogle Scholar
  14. 14.
    Zhao J, Jiang Y, Fan H, Liu M, Zhuo O, Wang X, Wu Q, Yang L, Ma Y, Hu Z (2017) Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure-performance relationship. Adv Mater 29Google Scholar
  15. 15.
    Raymundo-Pinero E, Azais P, Cacciaguerra T, Cazorla-Amoros D, Linares-Solano A, Beguin F (2005) KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon 43:786–795CrossRefGoogle Scholar
  16. 16.
    Wang H, Gao Q, Hu J (2009) High hydrogen storage capacity of porous carbons prepared by using activated carbon. J Am Chem Soc 131:7016–7022CrossRefGoogle Scholar
  17. 17.
    Wang H, Xu Z, Kohandehghan A, Li Z, Cui K, Tan X, Stephenson TJ, King'ondu CK, Holt CMB, Olsen BC, Tak JK, Harfield D, Anyia AO, Mitlin D (2013) Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 7:5131–5141CrossRefGoogle Scholar
  18. 18.
    Lu X, Jiang C, Hu Y, Zhong H, Zhao Y, Xu X, Liu H (2018) Preparation of hierarchically porous carbon spheres by hydrothermal carbonization process for high-performance electrochemical capacitors. J Appl Electrochem 48:233–241CrossRefGoogle Scholar
  19. 19.
    Xie Q, Zheng A, Zhai S, Wu S, Xie C, Zhang Y, Guan Y (2016) Reed straw derived active carbon/graphene hybrids as sustainable high-performance electrodes for advanced supercapacitors. J Solid State Electrochem 20:449–457CrossRefGoogle Scholar
  20. 20.
    Bai S, Tan G, Li X, Zhao Q, Meng Y, Wang Y, Zhang Y, Xiao D (2016) Pumpkin-derived porous carbon for supercapacitors with high performance. Chem Asian J 11:1828–1836CrossRefGoogle Scholar
  21. 21.
    Cheng P, Li T, Yu H, Zhi L, Liu Z, Lei Z (2016) Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors. J Phys Chem C 120:2079–2086CrossRefGoogle Scholar
  22. 22.
    Bhattacharjya D, Kim M-S, Bae T-S, Yu J-S (2013) High performance supercapacitor prepared from hollow mesoporous carbon capsules with hierarchical nanoarchitecture. J Power Sources 244:799–805CrossRefGoogle Scholar
  23. 23.
    Kim T, Jung G, Yoo S, Suh KS, Ruoff RS (2013) Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano 7:6899–6905CrossRefGoogle Scholar
  24. 24.
    Ouyang T, Cheng K, Gao Y, Kong S, Ye K, Wang G, Cao D (2016) Molten salt synthesis of nitrogen doped porous carbon: a new preparation methodology for high-volumetric capacitance electrode materials. J Mater Chem A 4:9832–9843CrossRefGoogle Scholar
  25. 25.
    Qian W, Zhu J, Zhang Y, Wu X, Yan F (2015) Condiment-derived 3D architecture porous carbon for electrochemical supercapacitors. Small 11:4959–4969CrossRefGoogle Scholar
  26. 26.
    Cui Y, Wang H, Mao N, Yu W, Shi J, Huang M, Liu W, Chen S, Wang X (2017) Tuning the morphology and structure of nanocarbons with activating agents for ultrafast ionic liquid-based supercapacitors. J Power Sources 361:182–194CrossRefGoogle Scholar
  27. 27.
    Feng H, Hu H, Dong H, Xiao Y, Cai Y, Lei B, Liu Y, Zheng M (2016) Hierarchical structured carbon derived from bagasse wastes: a simple and efficient synthesis route and its improved electrochemical properties for high-performance supercapacitors. J Power Sources 302:164–173CrossRefGoogle Scholar
  28. 28.
    Lee J-S, Kim S-I, Yoon J-C, Jang J-H (2013) Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor. ACS Nano 7:6047–6055CrossRefGoogle Scholar
  29. 29.
    Wang C, O'Connell MJ, Chan CK (2015) Facile one-pot synthesis of highly porous carbon foams for high-performance supercapacitors using template-free direct pyrolysis. ACS Appl Mater Interfaces 7:8952–8960CrossRefGoogle Scholar
  30. 30.
    Arrigo R, Haevecker M, Wrabetz S, Blume R, Lerch M, McGregor J, Parrott EPJ, Zeitler JA, Gladden LF, Knop-Gericke A, Schloegl R, Su DS (2010) Tuning the acid/base properties of nanocarbons by functionalization via amination. J Am Chem Soc 132:9616–9630CrossRefGoogle Scholar
  31. 31.
    Bao Q, Bao S, Li CM, Qi X, Pan C, Zang J, Lu Z, Li Y, Tang DY, Zhang S, Lian K (2008) Supercapacitance of solid carbon nanofibers made from ethanol flames. J Phys Chem C 112:3612–3618CrossRefGoogle Scholar
  32. 32.
    Yan J, Wang Q, Wei T, Jiang L, Zhang M, Jing X, Fan Z (2014) Template-assisted low temperature synthesis of functionalized graphene for ultrahigh volumetric performance supercapacitors. ACS Nano 8:4720–4729CrossRefGoogle Scholar
  33. 33.
    Ran F, Yang X, Shao L (2018) Recent progress in carbon-based nanoarchitectures for advanced supercapacitors. Adv Compos Hybrid Mater 1:32–55CrossRefGoogle Scholar
  34. 34.
    Song Y, Liu T, Qian F, Zhu C, Yao B, Duoss E, Spadaccini C, Worsley M, Li Y (2018) Three-dimensional carbon architectures for electrochemical capacitors. J Colloid Interface Sci 509:529–545CrossRefGoogle Scholar
  35. 35.
    Zhang H, Xiao W, Zhou W, Chen S, Zhang Y (2019) Hierarchical porous carbon derived from Sichuan pepper for high-performance symmetric supercapacitor with decent rate capability and cycling stability. Nanomaterials 9:553–567Google Scholar
  36. 36.
    Zhou M, Lu Y, Chen H, Ju X, Xiang F (2018) Excellent durable supercapacitor performance of hierarchical porous carbon spheres with macro hollow cores. J Energy Storage 19:35–40CrossRefGoogle Scholar
  37. 37.
    Zhang W, Xu J, Hou D, Yin J, Liu D, He Y, Lin H (2018) Hierarchical porous carbon prepared from biomass through a facile method for supercapacitor applications. J Colloid Interface Sci 530:338–344CrossRefGoogle Scholar
  38. 38.
    Wang S, Wang T, Liu P, Shi Y, Liu G, Li J (2017) Hierarchical porous carbons derived from microporous zeolitic metal azolate frameworks for supercapacitor electrodes. Mater Res Bull 88:62–68CrossRefGoogle Scholar
  39. 39.
    Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760–1763CrossRefGoogle Scholar
  40. 40.
    Galhena DTL, Bayer BC, Hofmann S, Amaratunga GAJ (2016) Understanding capacitance variation in sub-nanometer pores by in situ tuning of interlayer constrictions. ACS Nano 10:747–754CrossRefGoogle Scholar
  41. 41.
    Qian W, Sun F, Xu Y, Qiu L, Liu C, Wang S, Yan F (2014) Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ Sci 7:379–386CrossRefGoogle Scholar
  42. 42.
    Zhang J, Zhao XS (2012) On the configuration of supercapacitors for maximizing electrochemical performance. ChemSusChem 5:818–841CrossRefGoogle Scholar
  43. 43.
    Lei Z, Lu L, Zhao XS (2012) The electrocapacitive properties of graphene oxide reduced by urea. Energy Environ Sci 5:6391–6399CrossRefGoogle Scholar
  44. 44.
    Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9:1774–1785CrossRefGoogle Scholar
  45. 45.
    Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44:7484–7539CrossRefGoogle Scholar
  46. 46.
    Fasakin O, Dangbegnon JK, Momodu DY, Madito MJ, Oyedotun KO, Eleruja MA, Manyala N (2018) Synthesis and characterization of porous carbon derived from activated banana peels with hierarchical porosity for improved electrochemical performance. Electrochim Acta 262:187–196CrossRefGoogle Scholar
  47. 47.
    Qiu Z, Wang Y, Bi X, Zhou T, Zhou J, Zhao J, Miao Z, Yi W, Fu P, Zhuo S (2018) Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors. J Power Sources 376:82–90CrossRefGoogle Scholar
  48. 48.
    Dai C, Wan J, Geng W, Song S, Ma F, Shao J (2017) KOH direct treatment of kombucha and in situ activation to prepare hierarchical porous carbon for high-performance supercapacitor electrodes. J Solid State Electrochem 21:2929–2938CrossRefGoogle Scholar
  49. 49.
    Chang B, Shi W, Han S, Zhou Y, Liu Y, Zhang S, Yang B (2018) N-rich porous carbons with a high graphitization degree and multiscale pore network for boosting high-rate supercapacitor with ultrafast charging. Chem Eng J 350:585–598CrossRefGoogle Scholar
  50. 50.
    Wang Y, Xuan H, Lin G, Wang F, Chen Z, Dong X (2016) A melamine-assisted chemical blowing synthesis of N-doped activated carbon sheets for supercapacitor application. J Power Sources 319:262–270CrossRefGoogle Scholar
  51. 51.
    Su X-L, Chen J-R, Zheng G-P, Yang J-H, Guan X-X, Liu P, Zheng X-C (2018) Three-dimensional porous activated carbon derived from loofah sponge biomass for supercapacitor applications. Appl Surf Sci 436:327–336CrossRefGoogle Scholar
  52. 52.
    Nightingale E Jr (1959) Phenomenological theory of ion solvation. Effective radii of hydrated ions. J Phys Chem 63:1381–1387CrossRefGoogle Scholar
  53. 53.
    Guo J, Wu D, Wang T, Ma Y (2019) P-doped hierarchical porous carbon aerogels derived from phenolic resins for high performance supercapacitor. Appl Surf Sci 475:56–66CrossRefGoogle Scholar
  54. 54.
    Peng H, Ma G, Sun K, Zhang Z, Yang Q, Lei Z (2016) Nitrogen-doped interconnected carbon nanosheets from pomelo mesocarps for high performance supercapacitors. Electrochim Acta 190:862–871CrossRefGoogle Scholar
  55. 55.
    Wang Q, Yan J, Wang Y, Wei T, Zhang M, Jing X, Fan Z (2014) Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon 67:119–127CrossRefGoogle Scholar
  56. 56.
    Wang Q, Yan J, Wei T, Feng J, Ren Y, Fan Z, Zhang M, Jing X (2013) Two-dimensional mesoporous carbon sheet-like framework material for high-rate supercapacitors. Carbon 60:481–487CrossRefGoogle Scholar
  57. 57.
    Geng W, Ma F, Wu G, Song S, Wan J, Ma D (2016) MgO-templated hierarchical porous carbon sheets derived from coal tar pitch for supercapacitors. Electrochim Acta 191:854–863CrossRefGoogle Scholar
  58. 58.
    Song S, Ma F, Wu G, Ma D, Geng W, Wan J (2015) Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. J Mater Chem A 3:18154–18162CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chang Ma
    • 1
  • Jiankang Xu
    • 1
  • Qingchao Fan
    • 1
  • Jingli Shi
    • 1
    Email author
  • Yan Song
    • 2
  1. 1.Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage TechnologyTianjin Polytechnic UniversityTianjinChina
  2. 2.CAS Key Laboratory of Carbon Materials, Institute of Coal ChemistryChinese Academy of SciencesTaiyuanChina

Personalised recommendations