Na0.11WO3 nanoflake arrays grown on Ni foam for high-performance supercapacitor

  • Maolin Yang
  • Keyu Tao
  • Yun GongEmail author
Original Paper


Via a facile one-pot hydrothermal method, nanoflake arrays constructed by Na0.11WO3 and amorphous NiO or Ni (OH)2 were successfully grown on Ni foam (NF) in the presence of urea. The correlation between synthetic condition, composition, morphology and electrochemical behavior of the obtained compounds has been investigated. The optimum sample, Na0.11WO3/NF-15 (urea/Co molar ratio = 15) shows a large volumetric capacity of 14.86 and 6.00 C cm−3 at 0.5 and 10 mA cm−2 (3.33 and 66.67 mA cm−3), respectively, which is related with the three-dimensional (3D) W-O-W host framework of Na0.11WO3 with good electron conductivity, providing open tunnel for alkali ions to be intercalated/deintercalated. On the other hand, it is associated with the heterostructure of Na0.11WO3 and NiO or Ni (OH)2, giving to synergistic effect. Furthermore, it is ascribed to the 3D porous nanoflake arrays vertically grown on Ni foam. As a result, active sites can be exposed to electrolyte ions effectively. Meanwhile, Na0.11WO3/NF-15//activated carbon asymmetric supercapacitor can deliver a maximum energy density of 2.13 mWh cm−3 at the power density of 2.40 mW cm−3 with 87.5% of capacity retention after 10,000 charging-discharging cycles at 50 mA cm−2 (333.33 mA cm−3).

Graphical abstract


Na0.11WO3 Ni foam Nanoflake Supercapacitor 


Funding information

The study received financial supports from the National Natural Science Foundation of China (Nos. 21371184 and 21771028), National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, and Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization.

Supplementary material

10008_2019_4307_MOESM1_ESM.docx (6.3 mb)
ESM 1 (DOCX 6438 kb)


  1. 1.
    Nayak AK, Das AK, Pradhan D (2017) High performance solid-state asymmetric supercapacitor using green synthesized graphene–WO3 nanowires nanocomposite. ACS Sustain Chem Eng 5:10128–10138CrossRefGoogle Scholar
  2. 2.
    Kirubasankar B, Vijayan S, Angaiah S (2019) Sonochemical synthesis of a 2D–2D MoSe2/graphene nanohybrid electrode material for asymmetric supercapacitors. Sustain Energy Fuels 3:467–477CrossRefGoogle Scholar
  3. 3.
    Balakrishnan K, Kumar M, Angaiah S (2015) Synthesis of Polythiophene and its carbonaceous nanofibers as electrode materials for asymmetric supercapacitors. Adv Mater Res 938:151–157CrossRefGoogle Scholar
  4. 4.
    Kumar M, Subramania A, Balakrishnan K (2014) Preparation of electrospun Co3O4 nanofibers as electrode material for high performance asymmetric supercapacitors. Electrochim Acta 149:152–158CrossRefGoogle Scholar
  5. 5.
    Vijayan S, Kirubasankar B, Pazhamalai P, Solarajan AK, Angaiah S (2017) Electrospun Nd3+-doped LiMn2O4 nanofibers as high-performance cathode material for Li-ion capacitors. ChemElectrochem 4:2059–2067CrossRefGoogle Scholar
  6. 6.
    Singh K, Kirubasankar B, Angaiah S (2017) Synthesis and electrochemical performance of P2-Na0.67AlxCo1-xO2 (0.0 ≤ x ≤ 0.5) nanopowders for sodium-ion capacitors. Ionics 23:731–739CrossRefGoogle Scholar
  7. 7.
    Arunachalam S, Kirubasankar B, Rajagounder Nagarajan E, Vellasamy D, Angaiah S (2018) A facile chemical precipitation method for the synthesis of Nd (OH)3 and La (OH)3 nanopowders and their supercapacitor performances. ChemistrySelect 3:12719–12724CrossRefGoogle Scholar
  8. 8.
    Wang YP, Zhou BB, Zhang LH (2014) Synthesis and conductivity performance of K0.57WO3 tungsten bronze with gaseous permeating of K7MnFeW11O39·13H2O by Sm. J Alloy Compd 601:126–129CrossRefGoogle Scholar
  9. 9.
    Dey KR, Debnath T, Rüscher CH, Sundberg M, Hussain A (2010) Synthesis and characterization of niobium doped hexagonal tungsten bronze in the systems, CsxNbyW1−yO3. J Mater Sci 46:1388–1395CrossRefGoogle Scholar
  10. 10.
    Debnath T, Roy SC, Rüscher CH, Hussain A (2008) Synthesis and characterization of niobium-doped potassium tetragonal tungsten bronzes, KxNbyW1−yO3. J Mater Sci 44:179–185CrossRefGoogle Scholar
  11. 11.
    Tahmasebi N, Madmoli S, Farahnak P (2018) Synthesis of cesium tungsten bronze nanofibers with different crystalline phases. Mater Lett 211:161–164CrossRefGoogle Scholar
  12. 12.
    Jing H, Zuo G, Shen G, He G, Hui L, Ping C, Zhang J, Guo S (2009) Hollow sodium tungsten bronze (Na0.15WO3) nanospheres: preparation, characterization, and their adsorption properties. Nanoscale Res Lett 4:1241–1246CrossRefGoogle Scholar
  13. 13.
    Yang G, Liu XX (2018) Electrochemical fabrication of interconnected tungsten bronze nanosheets for high performance supercapacitor. J Power Sources 383:17–23CrossRefGoogle Scholar
  14. 14.
    Subasri A, Balakrishnan K, Nagarajan ER, Devadoss V, Subramania A (2018) Development of 2D La (OH)3/graphene nanohybrid by a facile solvothermal reduction process for high-performance supercapacitors. Electrochim Acta 281:329–337CrossRefGoogle Scholar
  15. 15.
    Kirubasankar B, Murugadoss V, Angaiah S (2017) Hydrothermal aassisted in situ growth of CoSe onto graphene nanosheets as a nanohybrid positive electrode for asymmetric supercapacitors. RSC Adv 7:5853–5862CrossRefGoogle Scholar
  16. 16.
    Liu G, Wang S, Nie Y, Sun X, Zhang Y, Tang Y (2013) Electrostatic-induced synthesis of tungsten bronze nanostructures with excellent photo-to-thermo conversion behavior. J Mater Chem A 1:10120–10129CrossRefGoogle Scholar
  17. 17.
    Su Y, Zhu B, Guan K, Gao S, Lv L, Du C, Peng L, Hou L, Wang X (2012) Particle size and structural control of ZnWO4 nanocrystals via Sn2+ doping for tunable optical and visible photocatalytic properties. J Phys Chem C 116:18508–18517CrossRefGoogle Scholar
  18. 18.
    Chen JS, Guan C, Gui Y, Blackwood DJ (2017) Rational design of self-supported Ni3S2 nanosheets array for advanced asymmetric supercapacitor with a superior energy density. ACS Appl Mater Interfaces 9:496–504CrossRefGoogle Scholar
  19. 19.
    Shi C, Chen M, Han X, Bi Y, Huang L, Zhou K, Zheng Z (2018) Thiacalix[4]arene-supported tetradecanuclear cobalt nanocage cluster as precursor to synthesize CoO/Co9S8@CN composite for supercapacitor application. Inorg Chem Front 5:1329–1335CrossRefGoogle Scholar
  20. 20.
    Seifollahi Bazarjani M, Hojamberdiev M, Morita K, Zhu G, Cherkashinin G, Fasel C, Herrmann T, Breitzke H, Gurlo A, Riedel R (2013) Visible light photocatalysis with c-WO3–x/WO3×H2O nanoheterostructures in situ formed in mesoporous polycarbosilane-siloxane polymer. J Am Chem Soc 135:4467–4475CrossRefGoogle Scholar
  21. 21.
    Muñoz-Márquez MA, Zarrabeitia M, Castillo-Martínez E, Eguía-Barrio A, Rojo T, Casas-Cabanas M (2015) Composition and evolution of the solid-electrolyte interphase in Na2Ti3O7 electrodes for Na-ion batteries: XPS and auger parameter analysis. ACS Appl Mater Inter 7:7801–7808CrossRefGoogle Scholar
  22. 22.
    Kou Y, Liu J, Li Y, Qu S, Ma C, Song Z, Han X, Deng Y, Hu W, Zhong C (2018) Electrochemical oxidation of chlorine-doped co (OH)2 nanosheet arrays on carbon cloth as a bifunctional oxygen electrode. ACS Appl Mater Inter 10:796–805CrossRefGoogle Scholar
  23. 23.
    Szilágyi I, Wang L, Gouma P, Balázsi C, Madarász J, Pokol G (2009) Preparation of hexagonal WO3 from hexagonal ammonium tungsten bronze for sensing NH3. Mater Res Bul 44:505–508CrossRefGoogle Scholar
  24. 24.
    A Martins T, Machado T, M Ferrer M, Zanetti S, Longo E (2016) Facile microwave-assisted hydrothermal synthesis of hexagonal sodium tungsten bronze and its high response to NO2. Mater Lett 185:197–200CrossRefGoogle Scholar
  25. 25.
    Rivas-Murias B, Salgueiriño V (2017) Thermodynamic CoO–Co3O4 crossover using Raman spectroscopy in magnetic octahedron-shaped nanocrystals. J Raman Spectrosc 48:837–841CrossRefGoogle Scholar
  26. 26.
    Huang Y, Yan C, Shi X, Zhi W, Li Z, Yan Y, Zhang M, Cao G (2018) Ni0.85Co0.15WO4 nanosheet electrodes for supercapacitors with excellent electrical conductivity and capacitive performance. Nano Energy 48:430–440CrossRefGoogle Scholar
  27. 27.
    Chen F, Wang J, Huang L, Bao H, Shi Y (2016) Ordered mesoporous crystalline Mo-doped WO2 materials with high tap density as anode material for lithium ion batteries. Chem Mater 28:608–617CrossRefGoogle Scholar
  28. 28.
    Kirubasankar B, Palanisamy P, Arunachalam S, Murugadoss V, Angaiah S (2019) 2D MoSe2-Ni (OH)2 nanohybrid as an efficient electrode material with high rate capability for asymmetric supercapacitor applications. Chem Eng J 355:881–890CrossRefGoogle Scholar
  29. 29.
    Kirubasankar B, Murugadoss V, Lin J, Ding T, Dong M, Liu H, Zhang J, Li T, Wang N, Guo Z, Angaiah S (2018) In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale 10:20414–20425CrossRefGoogle Scholar
  30. 30.
    Arunachalam S, Kirubasankar B, Murugadoss V, Vellasamy D, Angaiah S (2018) Facile synthesis of electrostatically anchored Nd (OH)3 nanorods onto graphene nanosheets as a high capacitance electrode material for supercapacitors. New J Chem 42:2923–2932CrossRefGoogle Scholar
  31. 31.
    Zhou Q, Gong Y, Lin J (2018) Facile one-pot synthesis of Ni2+-doped (NH4)2V3O8 nanoflakes@Ni foam with visible-light-driven photovoltaic behavior for supercapacitor application. Appl Surf Sci 439:33–44CrossRefGoogle Scholar
  32. 32.
    Yuksel R, Durucan C, Unalan HE (2016) Ternary nanocomposite SWNT/WO3/PANI thin film electrodes for supercapacitors. J Alloys Compd 658:183–189CrossRefGoogle Scholar
  33. 33.
    Tao K, Gong Y, Zhou Q, Lin J (2018) Nickel sulfide wrapped by porous cobalt molybdate nanosheet arrays grown on Ni foam for oxygen evolution reaction and supercapacitor. Electrochim Acta 286:65–76CrossRefGoogle Scholar
  34. 34.
    Huang Y, Zhu M, Meng W, Fu Y, Wang Z, Huang Y, Pei Z, Zhi C (2015) Robust reduced graphene oxide paper fabricated with a household non-stick frying pan: a large-area freestanding flexible substrate for supercapacitors. RSC Adv 5:33981–33989CrossRefGoogle Scholar
  35. 35.
    Wang F, Zhan X, Cheng Z, Wang Z, Wang Q, Xu K, Safdar M, He J (2015) Tungsten oxide@polypyrrole core–shell nanowire arrays as novel negative electrodes for asymmetric supercapacitors. Small 11:749–755CrossRefGoogle Scholar
  36. 36.
    Sun P, Deng Z, Yang P, Yu X, Chen Y, Liang Z, Meng H, Xie W, Tan S, Mai W (2015) Freestanding CNT–WO3 hybrid electrodes for flexible asymmetric supercapacitors. J Mater Chem A 3:12076–12080CrossRefGoogle Scholar
  37. 37.
    Xiao X, Ding T, Yuan L, Shen Y, Zhong Q, Zhang X, Cao Y, Hu B, Zhai T, Gong L, Chen J, Tong Y, Zhou J, Wang ZL (2012) WO3−x/MoO3−x core/shell nanowires on carbon fabric as an anode for all-solid-state asymmetric supercapacitors. Adv Energy Mater 2:1328–1332CrossRefGoogle Scholar
  38. 38.
    Yang Y, Zhang N, Zhang B, Zhang Y, Tao C, Wang J, Fan X (2017) Highly-efficient dendritic cable electrodes for flexible supercapacitive fabric. ACS Appl Mater Interfaces 9:40207–40214CrossRefGoogle Scholar
  39. 39.
    Zhou Z, Zhang Q, Sun J, He B, Guo J, Li Q, Li C, Xie L, Yao Y (2018) Metal–organic framework derived spindle-like carbon incorporated α-Fe2O3 grown on carbon nanotube fiber as anodes for high-performance wearable asymmetric supercapacitors. ACS Nano 12:9333–9341CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied Chemistry, College of Chemistry and Chemical EngineeringChongqing UniversityChongqingPeople’s Republic of China

Personalised recommendations